首页> 外文会议>Proceedings of the joint American Society for Composites/American Society for Testing and Materials Committee D30—nineteenth technical conference >Carbon Nanotube Reinforced Spider Silk –A Model for the Next Generation of Super Strong and Tough Fibers
【24h】

Carbon Nanotube Reinforced Spider Silk –A Model for the Next Generation of Super Strong and Tough Fibers

机译:碳纳米管增强蜘蛛丝–下一代超强韧纤维的模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In the never ending search for strong and tough materials we often look to nature forrninspiration. Spider silk, with strength as high as 4 Gpa at a breaking elongation of overrn35%, has long been recognized as the ultimate model of strong and tough material. Howrnever, the practical use of spider silk has eluted us because of the difficulty in domes icingrnspiders.rnThree recent developments have significant implications to addressing the need for strongrnand tough materials. Recent progress in biotechnology, notably by Nexia Biotechnologiesrnthrough transgenic synthesis of spider silk polymer has made large scale manufacturingrnof spider silk a real possibility. In this process, recombinant spider silk, BIOSTEEL BIOSTEELR inrnBELE BELER (Breed Early Lactate Early) goat system were produced in combination withrnpronuclear microinjection and nuclear transfer technologies resulting in a scalablernmanufacturing process for spider silk. While the biotechnology pathway to large scalernmanufacturing of spider silk is promising, the strength of the synthetic silk is far fromrnsatisfactory in spite of it's high level of elongation at break. Another development is thernavailability of carbon nanotube technology. With a Young's modulus of 1 Tpa and arnstrength of 30-60 Gpa at elongation at break ranging from 6-30%, carbon nanotubern(CNT) is an ideal reinforcing material to strengthen the synthetic spider silk. Tornmaximize the reinforcement effect of the CNT the electrospinning process, another recentrndevelopment, has been demonstrated to be an effective means to align carbon nanotube inrna polymer fibril matrix. This simple, non-mechanical fiber spinning process is capable ofrncreating nanoscale fibers in a continuous manner.rnIn this paper, we present recent research activities in our laboratory by combining thesernnew technologies to demonstrate the feasibility of producing super strong and toughrnfibers. Specifically, single walled carbon nanotubes (SWNT) were successfully dispersedrnin transgenic spider silk with various combinations of silk proteins to form spinning dopernfor electrospinning. Nanofibers as small as 10 nm were co-electrospun to form alignedrnand random nanofiber assemblies. Initial tensile testing of the aligned silk compositernshowed a 10X increase in modulus, 5X increase in strength and 3 fold increase inrntoughness with only 1 weight % of SWNT in MaSp1 silk matrix. This early encouragingrnresults has significant implications not only for a broad range of applications includingrntissue engineering scaffolds and ballistic armors but also demonstrating a promisingrnpathway to connect nano tube properties to macro-scale performance.
机译:在永无止境地寻找坚韧的材料时,我们经常寻求自然的灵感。蜘蛛丝在断裂伸长率超过35%时的强度高达4 Gpa,长期以来一直被认为是坚韧材料的最终典范。但是,由于难以使用圆顶结冰,蜘蛛丝的实际使用已使我们难以为继。最近的三项进展对解决对坚固材料的需求产生了重大影响。生物技术的最新进展,特别是Nexia Biotechnologies公司通过蜘蛛丝聚合物的转基因合成,使得大规模生产蜘蛛丝成为现实。在此过程中,结合原核显微注射和核移植技术,生产了重组蜘蛛丝,BIOSTEEL BIOSTEELR inrnBELE BELER(育种的早期乳酸早期)山羊系统,从而实现了蜘蛛丝的可扩展制造工艺。尽管生物技术有望大规模制造蜘蛛丝,但合成丝的强度远不能令人满意,尽管其断裂伸长率很高。另一个发展是碳纳米管技术的实用性。碳纳米管(CNT)具有1 Tpa的杨氏模量和30-60 Gpa的断裂伸长率,断裂伸长率为6-30%,是增强合成蜘蛛丝的理想增强材料。扭转最大程度地增强CNT的增强作用,静电纺丝工艺是另一项最新进展,已被证明是使碳纳米管与聚合物原纤维基体对齐的有效手段。这种简单的,非机械的纤维纺丝工艺能够连续地制造纳米级纤维。在本文中,我们通过结合最新技术展示了在实验室中的最新研究活动,以证明生产超强韧纤维的可行性。具体而言,单壁碳纳米管(SWNT)已成功地分散在转基因蜘蛛丝中,并与丝蛋白的各种组合形成了纺丝蛋白,用于静电纺丝。将小至10 nm的纳米纤维共电纺丝,以形成排列和随机的纳米纤维组件。对齐的丝复合材料的初始拉伸测试显示,在MaSp1丝基质中,SWNT的含量仅为1重量%,模量增加了10倍,强度增加了5倍,韧性增加了3倍。早期的令人鼓舞的结果不仅对包括组织工程支架和弹道装甲在内的广泛应用具有重大意义,而且还证明了将纳米管性能与宏观性能联系起来的有希望的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号