首页> 外文会议>Proceedings of the ASME microanoscale heat and mass transfer international conference 2012 : Microanofluidics and Lab-on-a-chip .... >STUDY OF SPECIFIC HEAT CAPACITY ENHANCEMENT OF MOLTEN SALT NANOMATERIALS FOR SOLAR THERMAL ENERGY STORAGE (TES)
【24h】

STUDY OF SPECIFIC HEAT CAPACITY ENHANCEMENT OF MOLTEN SALT NANOMATERIALS FOR SOLAR THERMAL ENERGY STORAGE (TES)

机译:太阳能热能储存盐盐纳米材料比热容的研究

获取原文
获取原文并翻译 | 示例

摘要

The overall thermal efficiency of solar power plants is highly sensitive to the operating characteristics of the Thermal Energy Storage (TES) devices. Enhancing the operating temperature of TES is imperative for enhancing the thermal efficacy of solar power plants. However, material property limitations for high temperature operation severely limit the choice of materials for TES. Molten salts and their eutectics are promising candidates for high temperature operation of TES. To enhance the thermal and operational efficiency of TES, the thermo-physical properties such as the specific heat capacity and thermal conductivity of the materials need to be maximized. The specific heat capacity (C_p) of molten salt is relatively smaller than other conventional TES materials. Recent studies have shown that addition of nanoparticles to molten salts can significantly enhance their specific heat capacity. Several transport and energy storage mechanisms have been proposed to account for these enhancements. Primarily, the layering of solvent molecules due to inter-molecular forces (due to competition between adhesive and cohesive forces) is observed at solid-liquid interface, leading to the formation of a more dense or "compressed layer" of solvent molecules on the dispersed nanoparticles. The formation and existence of the compressed layer has been demonstrated experimentally and from numerical predictions (e.g., Molecular Dynamics/ MD models). To verify the enhancement of specific heat capacity of molten salt nanofluids, the influence of compressed layer has been explored in this study. This implies that for the same amount (or concentration) of nanoparticle, the ratio of surface/ volume of the individual nanoparticles can change significantly depending on the nanoparticles size and shape - which in turn can affect the mass fraction of the compressed layer formed on the surface of the nanoparticles.
机译:太阳能发电厂的整体热效率对热能存储(TES)设备的运行特性高度敏感。必须提高TES的工作温度才能提高太阳能发电厂的热效率。但是,高温操作的材料特性限制严重限制了TES材料的选择。熔融盐及其低共熔物是TES高温运行的有希望的候选物。为了提高TES的热效率和运行效率,需要使材料的热物理性质(例如比热容和热导率)最大化。熔融盐的比热容(C_p)相对小于其他常规TES材料。最近的研究表明,向熔融盐中添加纳米颗粒可以显着提高其比热容。已经提出了几种运输和能量存储机制来说明这些增强。首先,在固液界面观察到由于分子间力(由于粘着力和内聚力之间的竞争)而引起的溶剂分子分层,导致在分散体上形成更致密或“压缩的”溶剂分子层纳米粒子。压缩层的形成和存在已通过实验和数值预测(例如,分子动力学/ MD模型)得到了证明。为了验证熔融盐纳米流体的比热容量的增强,已在本研究中探索了压缩层的影响。这意味着对于相同数量(或浓度)的纳米颗粒,单个纳米颗粒的表面/体积之比可能会根据纳米颗粒的大小和形状而发生显着变化-进而会影响在纳米颗粒上形成的压缩层的质量分数。纳米颗粒的表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号