【24h】

Development and Evaluation of Residual Stress/Strain Reduction Method in Thick CFRP Pipes

机译:CFRP厚管残余应力/应变减小方法的开发与评估

获取原文
获取原文并翻译 | 示例

摘要

Carbon fiber reinforced plastic (CFRP) pipes are key elements of truss structuresrnin spacecrafts supporting heavy optical instruments. CFRPs are utilized due to its lowrncoefficients of thermal expansion and high stiffness, which enhance performance ofrninstruments. Recently, stiffness and size of CFRP components have been increasedrndue to increased size of optical instruments. In thick CFRP pipes, however, significantrnradial stress/strain arises during cure and low temperature operation, resulting inrndelamination failure. Thus, we have developed a fiber-optic-based monitoring systemrnthat directly measures radial strain. In this study, we demonstrate a residualrnstress/strain reduction method using asymmetric layup and evaluate its effect using therndeveloped monitoring system. First, we addressed the effect of stacking sequence onrnradial stress development using finite element analysis (FEA). The results proposed arnconcept that residual stress decreases when 90o layers having circumferential fiberrndirection are gathered and placed close to the inner surface. This is because thernasymmetric layup decreases the bending stiffness in the circumferential direction andrnsuppresses thermal deformation leading to residual stress. We then manufacturedrnsymmetric and asymmetric pipes to verify the concept using the developed monitoringrnsystem. The embedded sensor responses showed that residual stress was successfullyrnreduced in the asymmetric pipe, confirming the effect of the proposed concept. Finally,rna 50ply thick CFRP pipe in which delamination occurs using symmetric layup wasrnmade using an asymmetric layup. The sensor response embedded in the specimen andrncross sectional observation indicated no damage in the pipe, realizing a thick “crackfree”rnCFRP pipe. The concept developed would improve thermal stability of thickrnhigh modulus CFRP pipes and contribute to high performance of satellites.
机译:碳纤维增强塑料(CFRP)管是支撑重型光学仪器的航天器中桁架结构的关键要素。由于CFRP的热膨胀系数低而刚性高,因此可以提高仪器的性能。近来,由于光学仪器的尺寸增加,CFRP组件的刚度和尺寸已经增加。但是,在厚CFRP管中,在固化和低温操作期间会产生明显的径向应力/应变,从而导致脱层失败。因此,我们开发了一种基于光纤的监测系统,可以直接测量径向应变。在这项研究中,我们演示了使用不对称叠层的残余应力/应变降低方法,并使用发达的监测系统评估了其效果。首先,我们使用有限元分析(FEA)解决了堆叠顺序对径向应力发展的影响。该结果提出了这样的概念:残余应力在具有周向纤维方向的90o层聚集并靠近内表面放置时减小。这是因为热对称的叠层降低了周向的弯曲刚度,并且抑制了导致残余应力的热变形。然后,我们使用开发的监控系统制造了对称和非对称管道,以验证这一概念。嵌入式传感器的响应表明,不对称管道中的残余应力已成功降低,从而证实了所提出概念的效果。最终,使用不对称铺层制造了厚度为50层的CFRP管,其中使用对称铺层发生分层。样品中嵌入的传感器响应和横截面观察表明,该管没有损坏,从而实现了厚实的“无裂纹” rnCFRP管。提出的概念将改善高模量高密度CFRP管的热稳定性,并有助于提高卫星的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号