首页> 外文会议>Proceedings of The 38th IPA convention and exhibition-Strengthening Partnership to Enhance Indonesia’s Energy Resilience and Global Competitiveness >INTEGRATED GEOMODELING TO IDENTIFY TIDAL SAND COMPLEX RESERVOIR DISTRIBUTION AND WATERFLOODING PLAN SCENARIO OF 33-6 SAND RESERVOIR, GITA MEMBER, TALANG AKAR FORMATION, ASRI BASIN, SOUTHEAST SUMATRA, INDONESIA
【24h】

INTEGRATED GEOMODELING TO IDENTIFY TIDAL SAND COMPLEX RESERVOIR DISTRIBUTION AND WATERFLOODING PLAN SCENARIO OF 33-6 SAND RESERVOIR, GITA MEMBER, TALANG AKAR FORMATION, ASRI BASIN, SOUTHEAST SUMATRA, INDONESIA

机译:印尼东南苏门答腊阿里盆地吉塔成员吉塔成员33-6砂岩储集层的复杂地质建模和潮水规划方案的综合地质建模

获取原文
获取原文并翻译 | 示例

摘要

Reservoir complexity and depleted reservoirrnpressure are the most challenges issues to appliedrnwaterflood project in Widuri field, Asri Basin,rnSoutheast Sumatra. The water flooding project hasrnbeen established in Widuri Field, Asri Basin sincernyear 2000 and focused on the Miocene Gita memberrnTalang Akar Formation, where 33-6 sand reservoirrnwas deposited. The reservoir distribution trend isrnsimply identified by acoustic impedance.rnThe combination of log and detailed core analysisrnthorough Widuri B-10 well, which has 100%rnrecovery of 56 ft core length, have contributed tornthe comprehensive analysis of depositional settingrnof the reservoir. 33-6 sand interpreted as a productrnof tidal channel sand in lower part and coarseningrnup tidal bar in upper portion, characterized byrncoupled sand coarsening - fining feature in GammarnRay log. The heterogeneity resulted different flowrnbehavior, either in oil production performance andrnwater flooding application. It is perform the uniquernreservoir behavior, reservoir compartmentalizationrnand heterogenic reservoir connectivity.rnDepleted pressure regime in 33-6 sand could bernidentified using advance seismic methods. In thisrncase, seismic 4-D is used to monitor waterfloodingrnand pressure depletion effect. There are three datarnset of seismic 4D (1991, 2000, 2004) for waterfloodrnmonitoring, the difference of the amplitude could bernused to justify the trend of waterflooding.rnQuantitatively 33-6 sand categorized as AVO classrnIV, indicated by positive gradient value, due to therncalcareous shale overlain at the top sand asrnmentioned in the core data. In geomodeling aspect, integrated seismic attribute combined with thrivedrnfacies analysis used to comprehend the detailrnreservoir and porosity-permeability relationship.rnIntegrated subsurface work involving all aspects ofrnGeology - Geophysical and Reservoir Engineeringrnwere established to understand the reservoirrncomplexity and behavior. This work implementedrnto enhance the production performance and futurernreservoir management in 33-6 sand reservoir,rnWiduri Field.
机译:苏门答腊东南部阿斯里盆地维杜里油田应用水驱项目面临的最大挑战是储层复杂性和枯竭的储层压力。自2000年以来,已经在阿斯里盆地的维杜里油田建立了注水工程,重点是中新世塔塔成员塔朗阿卡组,该处沉积了33-6砂层。测井和详细岩心分析相结合,通过Widuri B-10井,可以100%地回收56英尺岩心长度,从而有助于对储层的沉积环境进行综合分析。 33-6砂被解释为下部是潮汐通道砂,而上部则是粗化潮汐砂,其特征是在GammarnRay测井中具有耦合的粗化-细化特征。在石油生产性能和地下水驱应用中,非均质性导致了不同的流动行为。它具有独特的储层行为,储层分隔性和非均质储层连通性。可以使用先进的地震方法识别33-6砂层中的枯竭压力状态。在这种情况下,地震4-D用于监测注水和压力消耗效应。有3个地震4D数据集(1991,2000,2004)用于注水监测,振幅的差异可用来证明注水趋势是合理的。-由于有钙质状,定量地将33-6砂分类为AVO classrnIV,用正梯度值表示核心数据中提到的顶部砂层覆盖了页岩。在地质建模方面,通过综合地震属性和成熟相分析来了解储层与孔隙度-渗透率的关系。建立了涉及地质-地球物理与油藏工程各方面的综合地下工作,以了解储层的复杂性和行为。这项工作是为了提高Widuri油田33-6砂岩储层的生产性能和未来储层管理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号