首页> 外文会议>Proceedings of the 2008 spring simulation multiconference >Large Scale Modeling of the Piriform Cortex for Analyzing Antiepileptic Effects
【24h】

Large Scale Modeling of the Piriform Cortex for Analyzing Antiepileptic Effects

机译:梨状皮质的大规模建模以分析抗癫痫作用

获取原文
获取原文并翻译 | 示例

摘要

The aim of this paper is to understand how we can model the brain as a so-called "large scale system" for analyzing epileptic behaviour. In particular, we explore a large scale network model suitable for the piriform cortex. Well known from clinical experiments for its chaotic behavior, the piriform cortex is easy to model because it appears to be almost independent of other portions of the brain. We describe its behavior by moving the analysis from the time space into the phase space of the EEG signals. Although the model of the piriform cortex contains hundreds of variables, useful information can be extracted from a single EEG signal which can be perceived as a time series computed from the artificial electrodes. This transformation, from the time space of a time series to the phase space, is considered mandatory to extract the nonlinear characteristics related with chaos. In the phase space, we analyze the attractor built from the EEG by computing the Largest Lyapunov Exponent(LLE), and the Kaplan-York dimension (D-KY). In addition, the analysis in the phase space opens the problem of measuring the synchronization between two coupled subsystems using the model of the piriform cortex. In particular, in this paper, we have opted to quantify this by means of the the nonlinear interdependence, i.e., the so-called S measure. This index is used to measure the synchronization between two systems in the phase space, and tends to better describe the interaction between the systems than the classical cross-correlation coefficient.rnThe goal of studying the piriform cortex model is to see if we can generate certain desirable phenomena by modifying some of the underlying control parameters. We investigate, in this paper, the Problem of Stimulus Frequency, which is motivated by studies of the frequency of the olfactory stimuli as recognized by the piriform cortex via its bulb, which involves the dependence of the level of chaos as a function of the frequency of a stimulus that is globally applied in the network via the olfactory bulb.
机译:本文的目的是了解我们如何将大脑建模为用于分析癫痫行为的所谓“大规模系统”。特别是,我们探索了适合梨状皮质的大规模网络模型。梨状皮层由于其混沌行为而在临床实验中广为人知,易于建模,因为它似乎几乎独立于大脑的其他部分。我们通过将分析从EEG信号的时间空间移到相位空间来描述其行为。尽管梨状皮质的模型包含数百个变量,但是可以从单个EEG信号中提取有用的信息,这可以看作是从人造电极计算出的时间序列。从时间序列的时间空间到相空间的这种转换被认为是提取与混沌相关的非线性特征所必需的。在相空间中,我们通过计算最大Lyapunov指数(LLE)和Kaplan-York维数(D-KY)来分析从脑电图构建的吸引子。另外,在相空间中的分析提出了使用梨状皮层模型测量两个耦合子系统之间的同步性的问题。特别是,在本文中,我们选择通过非线性相互依赖性(即所谓的S测度)对此进行量化。该指数用于测量相空间中两个系统之间的同步,并且比经典互相关系数更能更好地描述系统之间的相互作用。研究梨状皮质模型的目的是看我们是否能够产生一定的通过修改一些基本控制参数来实现理想现象。我们在本文中研究了刺激频率问题,该问题是通过研究梨状皮层通过其皮球所识别的嗅觉刺激的频率而引起的,这涉及混沌程度与频率的关系。通过嗅球在网络中全局应用的刺激

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号