首页> 外文会议>Polymer reaction engineering X >NANOPARTICLES FOR INTESTINAL SEPSIS PREVENTION SYNTHESIZED VIA INVERSE MINIEMULSION POLYMERIZATION
【24h】

NANOPARTICLES FOR INTESTINAL SEPSIS PREVENTION SYNTHESIZED VIA INVERSE MINIEMULSION POLYMERIZATION

机译:反相微乳液聚合制备预防肠道脓毒症的纳米颗粒

获取原文
获取原文并翻译 | 示例

摘要

Previous research has shown that phosphate becomes depleted in the intestinal mucosa following local surgical injury or disease, triggering bacterial virulence and sepsis. Consequently, replenishment of depleted phosphate levels has been shown to prevent bacterial virulence in vitrd and sepsis in vivo. Inverse phase miniemulsion polymerization (IPMP) has been extensively used in recent years in the production of nanocapsules for drug delivery of water-soluble therapeutic compounds that can be rendered degradable with time while allowing for sustained release of the encapsulated agent. In previous work we have successfully encapsulated inorganic phosphate salts, such as potassium monophosphate, into nanoparticles formed using IPMP. Our in vitro studies, however, have shown that polyphosphate salts, specifically sodium hexametaphosphate (PPi), are more effective at suppressing bacterial virulence'3'. This study focuses on the production and encapsulation of sodium hexametaphosphate into nanoparticles for controlled and extended release. Previous studies demonstrated that encapsulation of sodium hexametaphosphate presents a series of challenges affecting the reproducibility of the IPMP process. Sodium hexametaphosphate is a strong lipophobe whose presence induces a high degree of order for water molecules. This modification in water structure weakens the surfactant interaction with water molecules, actively affecting the stability of the emulsion. This process, known as "salting-out", has been shown to shift the hydrophilic-lipophilic balance (HLB) of nonionic surfactants towards a more lipophilic value'4!. While this issue has been addressed in a variety of previous studies, no mathematical correlation currently exists describing the effect of salt concentration on the HLB of a specific surfactant. Since miniemulsions require combinations of different phase-soluble surfactants, this adds to the complexity in predicting the extent and strength of the electrolyte effect on the stability of the emulsion system.In this study, we adjusted the IPMP process to counter the unstabilizing force created by the presence of sodium hexametaphosphate in the aqueous phase of the system. A precursor solution containing PEG diacrylate (PEGDA) macromer and NVP comonomer were chosen to create the hydrogel matrix, due to its biocompatibility and the ability to control the crosslinking density. The emulsion was formed of water in cyclohexane with the help of two nonionic surfactants, Tween 20 and SPAN 80. The effect of variations in HLB ranging from 4.0 to 9.5 on emulsion droplet size was investigated, for which the optimum overall HLB occurred at 6.5, an increase of two HLB points over the theoretical required value without salt interference. The effects of total surfactant amounts, reaction time, temperature and initiator concentration on nanoparticle yield were also explored. A final emulsion with 3.2% w/v of surfactants, 2 hours of reaction time, 64℃ and an initiator concentration equal to 1 % of the initial double concentration resulted in a maximum nanoparticle mass yield of -39%. Finally, the particles were characterized in terms of crosslink density, showing an efficient encapsulation of the studied salt and a promising path for in-vivo testing. This study helped us develop a reproduceable formulation of an IPMP process that yields stable nanoparticles with suitable therapeutic levels of phosphates.
机译:先前的研究表明,局部手术损伤或疾病后,肠粘膜中的磷酸盐被消耗掉,从而引发细菌毒力和败血症。因此,补充磷酸水平的降低已显示出可预防体内浮游动物和败血症的细菌毒力。反相微乳液聚合(IPMP)近年来已广泛用于纳米胶囊的制备中,该胶囊用于药物递送水溶性治疗化合物,该化合物可随着时间的流逝而降解,同时允许胶囊剂的持续释放。在以前的工作中,我们已经成功地将无机磷酸盐(例如一磷酸钾)封装到使用IPMP形成的纳米颗粒中。然而,我们的体外研究表明,多磷酸盐,特别是六偏磷酸钠(PPi),在抑制细菌毒性'3'方面更为有效。这项研究的重点是六偏磷酸钠的生产和封装到纳米颗粒中,以进行控制和延长释放。先前的研究表明,六偏磷酸钠的封装提出了一系列影响IPMP工艺可重复性的挑战。六偏磷酸钠是一种强疏脂剂,其存在会导致水分子高度有序。水结构的这种改变削弱了表面活性剂与水分子的相互作用,从而积极影响乳液的稳定性。已经表明该方法称为“盐析”,其将非离子表面活性剂的亲水-亲脂平衡(HLB)移向更高的亲脂性值“ 4”。尽管以前的各种研究都已经解决了这个问题,但目前尚无数学相关性描述盐浓度对特定表面活性剂的HLB的影响。由于细乳液需要不同相溶性表面活性剂的组合,因此增加了预测电解质对乳液体系稳定性的影响程度和强度的复杂性。\ r \ n在本研究中,我们调整了IPMP工艺以应对不稳定的情况系统水相中六偏磷酸钠的存在产生的作用力。由于其生物相容性和控制交联密度的能力,选择包含PEG二丙烯酸酯(PEGDA)大分子单体和NVP共聚单体的前体溶液来创建水凝胶基质。在两种非离子表面活性剂Tween 20和SPAN 80的帮助下,乳液是由水在环己烷中形成的。研究了HLB从4.0到9.5的变化对乳液液滴尺寸的影响,为此,最佳总HLB发生在6.5,比理论要求值增加了两个HLB点,而无盐干扰。还探讨了表面活性剂的总量,反应时间,温度和引发剂浓度对纳米粒子收率的影响。最终乳液的表面活性剂含量为3.2%w / v,反应时间为2小时,温度为64℃,引发剂浓度等于初始双倍浓度的1%,纳米颗粒的最大产率为-39%。最终,根据交联密度对颗粒进行了表征,显示了所研究盐的有效包封和体内测试的有希望的途径。这项研究帮助我们开发了IPMP工艺的可再生配方,该工艺可产生稳定的纳米颗粒,并具有合适的磷酸盐治疗水平。

著录项

  • 来源
    《Polymer reaction engineering X》|2018年|77-77|共1页
  • 会议地点 Punta Cana(DM)
  • 作者单位

    Department of Chemical and Biological Engineering, Illinois Institute of Technology, USA;

    Department of Biomedical Engineering, Illinois Institute of Technology, USA;

    Department of Surgery, University of Chicago Medical Center, USA;

    Department of Surgery, University of Chicago Medical Center, USA;

    Department of Biomedical Engineering, Illinois Institute of Technology, USA;

    Department of Chemical and Biological Engineering, Illinois Institute of Technology, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号