【24h】

Plasmonics for the industry

机译:行业等离子

获取原文
获取原文并翻译 | 示例

摘要

Metallic nanostructures interact strongly with light through surface plasmon modes and many application fields have been proposed during the past decade, including light harvesting, sensing and structural colors. However, their implementation for the industry requires the development of up scalable and cost effective manufacturing processes. The fabrication at wafer scale of plasmonic nanostructures and metamaterials using nano imprint lithography is reported. After structuring, the evaporation of various plasmonic materials are performed with a tilt angle with respect to the substrate, which increases the light interactions with the different metallic layers as well as enlarges the design possibilities. A step and repeat process is used to increase further the area of nanos-tructured surface. The measured optical properties of the fabricated structures show a very good agreement compared to numerical calculations using the rigorous coupled wave analysis. These numerical calculations together which structural characterization, increase the process control and enable the design of the nanostructures for specific applications. In particular, nanostructures with a shape similar to split ring resonators and which support high order plasmonic modes showing Fano resonances are shown to be promising for sensing applications. The structures were designed in such a way to have a strong spectral response in the blue/green region of the visible spectrum. Examples of refractive index sensors and stretch sensors were finally discussed.
机译:金属纳米结构通过表面等离激元模式与光产生强烈的相互作用,并且在过去十年中已提出了许多应用领域,包括光收集,感测和结构颜色。然而,它们在行业中的实施要求开发可升级且具有成本效益的制造工艺。报道了使用纳米压印光刻技术在晶片规模上制造等离子纳米结构和超材料的方法。在结构化之后,以相对于衬底的倾斜角执行各种等离子体材料的蒸发,这增加了与不同金属层的光相互作用,并扩大了设计可能性。使用分步重复过程进一步增加了纳米结构表面的面积。与使用严格耦合波分析进行的数值计算相比,所制造结构的测量光学性能显示出非常好的一致性。这些数值计算共同进行了结构表征,从而增加了工艺控制能力,并使针对特定应用的纳米结构设计成为可能。特别地,具有类似于裂环谐振器的形状并且支持显示出Fano谐振的高阶等离激元模式的纳米结构被证明在传感应用中很有前途。结构设计为在可见光谱的蓝色/绿色区域具有强烈的光谱响应。最后讨论了折射率传感器和拉伸传感器的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号