首页> 外文会议>Plasmonics II >Cavity-enhanced ultra-thin aluminum plasmonic resonator for surface enhanced infrared absorption spectroscopy
【24h】

Cavity-enhanced ultra-thin aluminum plasmonic resonator for surface enhanced infrared absorption spectroscopy

机译:用于表面增强红外吸收光谱的腔增强超薄铝等离子体共振器

获取原文
获取原文并翻译 | 示例

摘要

Owing to the advantages of natural abundance, low cost, and amenability to manufacturing processes, aluminum has recently been recognized as a highly promising plasmonic material that attracts extensive research interest. Here, we propose a cavity-enhanced ultra-thin plasmonic resonator for surface enhanced infrared absorption spectroscopy. The considered resonator consists of a patterned ultra-thin aluminum grating strips, a dielectric spacer layer and a reflective layer. In such structure, the resonance absorption is enhanced by the cavity formed between the patterned aluminum strips and the reflective layer. It is demonstrated that the spectral features of the resonator can be tuned by adjusting the structural parameters. Furthermore, in order to achieve a deep and broad spectral line shape, the spacer layer thickness should be properly designed to realize the simultaneous resonances for the electric and the magnetic excitations. The enhanced infrared absorption characteristics can be used for infrared sensing of the environment. When the resonator is covered with a molecular layer, the resonator can be used as a surface enhanced infrared absorption substrate to enhance the absorption signal of the molecules. A high enhanced factor of 1.15×10~5 can be achieved when the resonance wavelength of resonator is adjusted to match the desired vibrational mode of the molecules. Such a cavity-enhanced plasmonic resonator, which is easy for practical fabrication, is expected to have potential applications for infrared sensing with high-performance.
机译:由于天然丰度高,成本低和易于制造工艺的优点,铝最近被认为是一种很有前途的等离子体材料,吸引了广泛的研究兴趣。在这里,我们提出了一种用于表面增强红外吸收光谱的腔增强超薄等离子体共振器。所考虑的谐振器由图案化的超薄铝光栅条,介电间隔层和反射层组成。在这种结构中,通过在图案化的铝条和反射层之间形成的空腔来增强共振吸收。已经证明,可以通过调节结构参数来调谐谐振器的光谱特征。此外,为了获得较深和较宽的光谱线形状,间隔层的厚度应适当设计以实现电和磁激发的同时共振。增强的红外吸收特性可用于环境的红外感应。当谐振器被分子层覆盖时,该谐振器可以用作表面增强的红外吸收基板以增强分子的吸收信号。当调节共振器的共振波长以匹配所需的分子振动模式时,可以获得1.15×10〜5的高增强因子。这种易于实际制造的腔增强等离子体谐振器有望在高性能红外传感方面具有潜在的应用。

著录项

  • 来源
    《Plasmonics II》|2016年|1002818.1-1002818.8|共8页
  • 会议地点 Beijing(CN)
  • 作者单位

    Key Laboratory of Optoelectronic Technology System, Ministry of Education of China, Optoelectronic Engineering College of Chongqing University, Chongqing, 400044, China,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China;

    Key Laboratory of Optoelectronic Technology System, Ministry of Education of China, Optoelectronic Engineering College of Chongqing University, Chongqing, 400044, China,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China;

    Key Laboratory of Optoelectronic Technology System, Ministry of Education of China, Optoelectronic Engineering College of Chongqing University, Chongqing, 400044, China,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China;

    Key Laboratory of Optoelectronic Technology System, Ministry of Education of China, Optoelectronic Engineering College of Chongqing University, Chongqing, 400044, China,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China;

    Key Laboratory of Optoelectronic Technology System, Ministry of Education of China, Optoelectronic Engineering College of Chongqing University, Chongqing, 400044, China;

    Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Surface enhanced infrared absorption spectroscopy; Aluminum plasmonics; Cavity-enhanced; Resonator;

    机译:表面增强红外吸收光谱;铝等离子体;腔增强;共鸣器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号