【24h】

Future Memory Technologies

机译:未来存储技术

获取原文
获取原文并翻译 | 示例

摘要

In this paper the concepts, status and technical challenges for high density working memory will be reviewed. The main technology covering this application space today is DRAM, based on a 1 transistor 1 capacitor cell (1T1C). 50-60nm DRAM technologies have been already introduced into mass production. Full process integration results for 40nm DRAM, and key technologies for the 30nm DRAM node have been presented previously. No technical roadblock is seen for further scaling down to the 30nm node, however some of the key technology concepts such as the capacitor dielectrics with capacitance equivalent (oxide) thickness (CET) of <0.5nm have still to be proven. The DRAM cell sizes currently in mass production are ranging between 8F~2 and 6F~2. The development of the further cell size reduction to 4F2 is under development.rnThe status and scaling potential of the most probable DRAM successor candidate technologies: capacitor-less DRAM, phase-change RAM (PCRAM), and spin transfer torque MRAM (STT MRAM) will be discussed.rnCapacitor-less DRAM or floating body FB DRAM cells have been proposed, both for stand-alone memory and embedded memory applications. Different cell device schemes (transistor and capacitor-coupled thyristor) have been investigated. Recently a number of papers covering cell device data and integration schemes for 50nm feature sizes have been published. However so far no results based on a high density demonstrator chip or product have been shown.rnPCRAM is the most mature technology out of the candidates mentioned. Product demonstrators with 90nm design rules and densities up to 512Mb have been presented. The introduction of first products in 65-45nm technology for 2009 has been announced recently. Scalability of the phase change element to below 10nm has been demonstrated.rnSpin transfer torque (STT) MRAM has been proposed as a fast, nonvolatile, and scalable cell concept. The memory concept has been experimentally verified at structure sizes down to 50nm. Theoretical estimations indicate the scalability down to 20nm. A 2Mb product demonstrator has been published, utilizing a rather large cell size, however.rnBased on these data the comparison of the key parameters for the different technologies will be presented, and a mapping of the different technologies to the current DRAM application segments will be proposed.
机译:本文将回顾高密度工作记忆的概念,现状和技术挑战。当今,涵盖此应用空间的主要技术是基于1晶体管1电容器单元(1T1C)的DRAM。 50-60nm DRAM技术已经投入批量生产。先前已经介绍了40nm DRAM的完整工艺集成结果以及30nm DRAM节点的关键技术。没有进一步缩小到30nm节点的技术障碍,但是一些关键的技术概念,例如电容等效(氧化物)厚度(CET)小于0.5nm的电容器电介质仍有待证明。当前批量生产的DRAM单元尺寸在8F〜2和6F〜2之间。正在进一步开发将单元尺寸减小到4F2的方法。rn最有可能的DRAM后续候选技术的现状和扩展潜力:无电容器DRAM,相变RAM(PCRAM)和自旋转移矩MRAM(STT MRAM)已经提出了用于独立存储器和嵌入式存储器应用的无电容器DRAM或浮体FB DRAM单元。已经研究了不同的电池器件方案(晶体管和电容器耦合晶闸管)。最近,已经发表了许多有关单元器件数据和50nm特征尺寸集成方案的论文。但是,到目前为止,尚未显示基于高密度演示器芯片或产品的结果。rnPCRAM是上述候选技术中最成熟的技术。已经提出了具有90nm设计规则和最高512Mb密度的产品演示器。最近宣布将在2009年推出采用65-45nm技术的首批产品。已经证明了相变元件可扩展至10nm以下。旋转转移扭矩(STT)MRAM已被提出作为一种快速,非易失性和可扩展的单元概念。存储器概念已在最小50nm的结构尺寸上进行了实验验证。理论估计表明可扩展性可低至20nm。已经发布了一个2Mb产品演示器,它利用了相当大的单元尺寸。基于这些数据,将提供不同技术关键参数的比较,并将不同技术映射到当前DRAM应用领域。建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号