首页> 外文会议>Photonic Engineering >Scheduling, Scaling Laws and Randomisation for Optimised Photopolymer Holographic Data Storage
【24h】

Scheduling, Scaling Laws and Randomisation for Optimised Photopolymer Holographic Data Storage

机译:优化光聚合物全息数据存储的计划,缩放定律和随机化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The well known scaling law of holographic diffraction states that the replay diffraction efficiency η = ΠM~2, where M is the number of gratings (pages) stored, and Γ is a constant system parameter. This is an important metric used to quantify HDS material performance, and a great deal of experimental work to validate this rule for a wide variety of materials, (photorefractives, polymers etc.) have been presented over the years in the literature. No paper detailing the theoretical basis of this law, (i.e. including specific material characteristics, the recording geometry and/or the electromagnetic replay conditions), for photopolymers has previously been presented. In a recent paper [1] we have described in a clear way the optimization of the recording schedule in a photopolymer material governed by the Nonlocal Polymerization Driven Diffusion model (NPDD). One of the main assumptions made in [1] is that a long material relaxation time can be permitted between exposures. Another was that no phase shifts of the exposing pattern took place between exposures. In this paper we discuss these assumption and develop an intermediate first-order model. In a second paper [2], based on the results presented in [1] we have shown that our optimized predictions are in agreement with the scaling law of holographic diffraction. Thus the law is shown to hold for photopolymer recording media governed by the predictions of the NPDD. Based on our analysis: (ⅰ) A media inverse scaling law is proposed; (ⅱ) Γ is for the first time related to photopolymer material parameters and the hologram geometry and replay conditions; and (ⅲ) The form and validity of the diffraction efficiency inverse square scaling law for higher diffraction efficiency gratings is commented upon. In this paper we also review this result.
机译:众所周知的全息衍射定标定律指出,重放衍射效率η=ΠM〜2,其中M是存储的光栅(页面)数,Γ是恒定的系统参数。这是用于量化HDS材料性能的重要指标,并且多年来在文献中已经提出了许多实验工作来验证该规则适用于多种材料(光折射材料,聚合物等)。以前没有文献详细介绍该光聚合物的该法则的理论基础(即包括特定的材料特性,记录几何形状和/或电磁重放条件)。在最近的论文[1]中,我们以清晰的方式描述了受非局部聚合驱动扩散模型(NPDD)控制的光敏聚合物材料中记录时间表的优化。 [1]中的主要假设之一是两次曝光之间可以允许较长的材料松弛时间。另一个是在两次曝光之间没有发生曝光图案的相移。在本文中,我们讨论了这些假设并建立了中间一阶模型。在第二篇论文[2]中,基于[1]中给出的结果,我们表明我们的优化预测与全息衍射的定标律一致。因此,表明该定律适用于受NPDD预测控制的光聚合物记录介质。根据我们的分析:(ⅰ)提出了一种介质反比例定律; (ⅱ)Γ首次与光敏聚合物材料参数以及全息图几何形状和重放条件有关; (ⅲ)评述了较高衍射效率光栅的衍射效率平方反比定律的形式和有效性。在本文中,我们还回顾了这一结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号