首页> 外文会议>Penetrating radiation systems and applications XII >Investigation of the possibility of gamma-ray diagnostic imaging of target compression at NIF
【24h】

Investigation of the possibility of gamma-ray diagnostic imaging of target compression at NIF

机译:NIF目标压缩的伽马射线诊断成像可能性的研究

获取原文
获取原文并翻译 | 示例

摘要

The National Ignition Facility at Lawrence Livermore National Laboratory is the world's leading facility to study the physics of igniting plasmas. Plasmas of hot deuterium and tritium, undergo d(t,n)α reactions that produce a 14.1 MeV neutron and 3.5 MeV a particle, in the center of mass. As these neutrons pass through the materials surrounding the hot core, they may undergo subsequent (n,x) reactions. For example, ~(12)C(n,n'γ)~(12)C reactions occur in remnant debris from the polymer ablator resulting in a significant fluence of 4.44 MeV gamma-rays. Imaging of these gammas will enable the determination of the volumetric size and symmetry of the ablation; large size and high asymmetry is expected to correlate with poor compression and lower fusion yield. Results from a gamma-ray imaging system are expected to be complimentary to a neutron imaging diagnostic system already in place at the NIF. This paper describes initial efforts to design a gamma-ray imaging system for the NIF using the existing neutron imaging system as a baseline for study. Due to the cross-section and expected range of ablator areal densities, the gamma flux should be approximately 10~(-3) of the neutron flux. For this reason, care must be taken to maximize the efficiency of the gamma-ray imaging system because it will be gamma starved. As with the neutron imager, use of pinholes and/or coded apertures are anticipated. Along with aperture and detector design, the selection of an appropriate scintillator is discussed. The volume of energy deposition of the interacting 4.44 MeV gamma-rays is a critical parameter limiting the imaging system spatial resolution. The volume of energy deposition is simulated with GEANT4, and plans to measure the volume of energy deposition experimentally are described. Results of tests on a pixellated LYSO scintillator are also presented.
机译:劳伦斯·利弗莫尔国家实验室的国家点火设施是研究点火等离子体物理学的全球领先设施。热氘和tri的等离子体经历d(t,n)α反应,在质心产生14.1 MeV中子和3.5 MeV粒子。当这些中子穿过热核周围的材料时,它们可能会发生随后的(n,x)反应。例如,〜(12)C(n,n'γ)〜(12)C反应在来自聚合物烧蚀器的残余碎屑中发生,从而产生了4.44 MeV伽马射线的显着通量。这些伽马射线的成像将能够确定消融的体积大小和对称性。预期大尺寸和高不对称性与较差的压缩和较低的融合产率有关。预计伽玛射线成像系统的结果将与NIF已有的中子成像诊断系统相辅相成。本文介绍了使用现有的中子成像系统作为研究基准为NIF设计伽马射线成像系统的初步工作。由于消融面的密度和横截面范围,伽马通量应约为中子通量的10〜(-3)。由于这个原因,必须注意使伽马射线成像系统的效率最大化,因为它将使伽马饥饿。与中子成像仪一样,预期将使用针孔和/或编码孔。除了孔径和检测器设计外,还讨论了合适的闪烁器的选择。相互作用的4.44 MeV伽马射线的能量沉积量是限制成像系统空间分辨率的关键参数。用GEANT4模拟能量沉积的体积,并描述了实验测量能量沉积体积的计划。还介绍了在像素化LYSO闪烁体上的测试结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号