首页> 外文会议>Optics in health care and biomedical optics V >Cost-effective approaches for high-resolution bioimaging by time-stretched confocal microscopy at 1 μm
【24h】

Cost-effective approaches for high-resolution bioimaging by time-stretched confocal microscopy at 1 μm

机译:通过1μm的时间拉伸共聚焦显微镜进行高分辨率生物成像的经济有效方法

获取原文
获取原文并翻译 | 示例

摘要

Optical imaging based on time-stretch process has recently been proven as a powerful tool for delivering ultra-high frame rate (> 1MHz) which is not achievable by the conventional image sensors. Together with the capability of optical image amplification for overcoming the trade-off between detection sensitivity and speed, this new imaging modality is particularly valuable in high-throughput biomedical diagnostic practice, e.g. imaging flow cytometry. The ultra-high frame rate in time-stretch imaging is attained by two key enabling elements: dispersive fiber providing the time-stretch process via group-velocity-dispersion (GVD), and electronic digitizer. It is well-known that many biophotonic applications favor the spectral window of ~1 μm. However, reasonably high GVD (> 0.1 nsm) in this range can only be achieved by using specialty single-mode fiber (SMF) at 1 μm. Moreover, the ultrafast detection has to rely on the state-of-the-art digitizer with significantly wide-bandwidth and high sampling rate (e.g. >10 GHz, >40 GS/s). These stringent requirements imply the prohibitively high-cost of the system and hinder its practical use in biomedical diagnostics. We here demonstrate two cost-effective approaches for realizing time-stretch confocal microscopy at 1 μm: (ⅰ) using the standard telecommunication SMF (e.g. SMF28) to act as a few-mode fiber (FMF) at 1 μm for the time-stretch process, and (ⅱ) implementing the pixel super-resolution (SR) algorithm to restore the high-resolution (HR) image when using a lower-bandwidth digitizer. By using a FMF (with a GVD of ~ 0.15nsm) and a modified pixel-SR algorithm, we can achieve time-stretch confocal microscopy at 1 μm with cellular resolution (~ 3 μm) at a frame rate 1 MHz.
机译:最近,基于时间伸展过程的光学成像已被证明是一种强大的工具,可提供传统图像传感器无法实现的超高帧频(> 1MHz)。结合光学图像放大功能以克服检测灵敏度和速度之间的折衷,这种新的成像方式在高通量生物医学诊断实践中特别有价值,例如成像流式细胞仪。时间拉伸成像中的超高帧速率是由两个关键的实现要素实现的:通过组速度色散(GVD)提供时间拉伸过程的色散光纤,以及电子数字化仪。众所周知,许多生物光子应用都支持〜1μm的光谱窗口。但是,只有使用1μm的特殊单模光纤(SMF)才能在此范围内获得相当高的GVD(> 0.1 ns / nm)。此外,超快速检测必须依靠具有显着带宽和高采样率(例如,> 10 GHz,> 40 GS / s)的最新数字转换器。这些严格的要求意味着该系统的成本过高,并阻碍了其在生物医学诊断中的实际使用。我们在这里演示了两种经济有效的方法,可实现1μm的时间拉伸共聚焦显微镜:(ⅰ)使用标准电信SMF(例如SMF28)在1μm的时间用作多模光纤(FMF)处理,以及(ⅱ)实现像素超分辨率(SR)算法,以在使用较低带宽的数字化仪时恢复高分辨率(HR)图像。通过使用FMF(GVD约为0.15ns / nm)和改进的pixel-SR算法,我们可以以1 MHz的帧频在1μm的时间分辨率(〜3μm)下实现时间拉伸共聚焦显微镜。

著录项

  • 来源
    《Optics in health care and biomedical optics V》|2012年|85531P.1-85531P.7|共7页
  • 会议地点 Beijing(CN)
  • 作者单位

    Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong;

    Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong;

    Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong;

    Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong;

    Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong;

    Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong;

    Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号