首页> 外文会议>Optical trapping and optical micromanipulation XIV >Vectorial field propagation through high NA objectives using polarized Gaussian beam decomposition
【24h】

Vectorial field propagation through high NA objectives using polarized Gaussian beam decomposition

机译:极化高斯光束分解通过高NA物镜的矢量场传播

获取原文
获取原文并翻译 | 示例

摘要

Scalar fields can be propagated through non-paraxial systems using the Gaussian beam decomposition method. However, for high NA objectives, this scalar treatment is not sufficient to correctly describe the electromagnetic fields inside the focal region due to high ray bendings, which result in a significant change in the polarization state of light. To model these vectorial effects, the Gaussian beam decomposition method has to be extended to include the polarization state of light. In this work we have combined it with the three dimensional polarization ray tracing in order to propagate vectorial fields through high NA optical systems. During the Gaussian beam decomposition, the polarization state of each individual beamlet is represented by a polarization vector [E_x, E_y, E_z] associated with its central ray. Individual Gaussian beams are then propagated through the system using the complex ray tracing method. The effect of the optical system on the polarization state of each beam is computed by applying the three dimensional polarization ray tracing of the corresponding central rays. Finally the individual beams are superposed coherently in the plane of mterest resulting in the complete vectorial field. We apply the proposed method to compute the vectorial field inside the focal region of a high NA microscope objective lens and compare our result to the vectorial Debye integral method. We find that the Gaussian beam decomposition method overcomes serious limitations of algorithms relying on Fourier transforms, i.e. the field sampling requirements are less critical in high NA focusing and in the presence of large aberrations. However, sharp edges in the amplitude profile are difficult to handle as they should be replaced with smooth Gaussian edge.
机译:标量场可以使用高斯光束分解方法在非傍轴系统中传播。但是,对于高NA物镜,这种标量处理不足以正确地描述由于高射线弯曲而导致的聚焦区域内部的电磁场,这会导致光的偏振态发生重大变化。为了模拟这些矢量效应,必须扩展高斯光束分解方法以包括光的偏振态。在这项工作中,我们将其与三维偏振射线追踪相结合,以通过高NA光学系统传播矢量场。在高斯光束分解期间,每个单独的子束的偏振状态由与其中心射线关联的偏振矢量[E_x,E_y,E_z]表示。然后,使用复杂的光线跟踪方法将各个高斯光束传播通过系统。光学系统对每个光束的偏振态的影响是通过应用相应中心光线的三维偏振光线追踪来计算的。最后,各个光束相干地叠加在最平面上,从而形成完整的矢量场。我们将所提出的方法用于计算高NA显微镜物镜的聚焦区域内的矢量场,并将我们的结果与矢量Debye积分法进行比较。我们发现,高斯光束分解方法克服了依赖于傅立叶变换的算法的严重局限性,即在高NA聚焦和大像差的情况下,野外采样要求不那么关键。但是,振幅轮廓中的尖锐边缘很难处理,因为应将其替换为平滑的高斯边缘。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号