首页> 外文会议>Optical trapping and optical micromanipulation IX. >Cavity optomechanics with low-noise crystalline mirrors
【24h】

Cavity optomechanics with low-noise crystalline mirrors

机译:带低噪声晶体镜的腔光机

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Cavity optomechanics is a rapidly evolving field operating at the intersection of solid-state physics and modern optics.The fundamental process at the heart of this interdisciplinary endeavor is the enhancement of radiation pressure within ahigh-finesse optical cavity. Isolating this weak interaction, i.e. the momentum transfer of photons onto the cavityboundaries, requires the development of mechanical resonators that simultaneously exhibit high reflectivity (requiringlow absorption and scatter loss) and low mechanical dissipation. In a Fabry-Pérot implementation, this is realized byfabricating suspended micrometer-scale mechanical resonators directly from high-reflectivity multilayers. Thus, theproperties of the mirror material—particularly the loss angle and optical absorption—drive the ultimate performance ofthe devices. Interestingly, similar requirements are found in a broad spectrum of applications, ranging from gravitationalwave interferometers to stabilized lasers for optical atomic clocks. This overlap leads to an intimate link betweenadvances in the seemingly disparate areas of macroscopic interferometry (e.g. precision measurement and spectroscopy)and micro- and nanoscale optomechanical systems. In this manuscript, I will outline the fascinating implications ofcavity optomechanics and present proof-of-concept experiments including MHz-frequency resonators aimed at thedemonstration of quantum states of mechanical systems, as well as low-frequency (&1 kHz) devices for the observationof quantum radiation pressure noise. Additionally, I will discuss off-shoot technologies developed in the course of thiswork, such as a numerical solver for the determination of support-mediated losses in mechanical resonators, as well as anew strategy for the realization of ultra-high-stability optical reference cavities based on transferred crystallinemultilayers.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
机译:腔光学力学是一个快速发展的领域,它在固态物理学和现代光学的交汇处运行。这一跨学科研究的核心过程是提高高精细光学腔内的辐射压力。隔离这种弱相互作用,即将光子的动量转移到腔边界上,需要开发同时具有高反射率(要求低吸收和散射损耗)和低机械耗散的机械谐振器。在Fabry-Pérot的实现中,这是通过直接从高反射率的多层结构中制造悬浮的微米级机械谐振器来实现的。因此,镜面材料的特性,尤其是损耗角和光吸收特性,将驱动器件的最终性能。有趣的是,在从重力波干涉仪到用于光学原子钟的稳定激光器等广泛的应用领域中也发现了类似的要求。这种重叠导致宏观干涉测量(例如精密测量和光谱学)看起来相异的领域中的先进技术与微米和纳米级光机械系统之间的紧密联系。在本手稿中,我将概述腔体光力学的引人入胜的含义,并提出概念验证实验,包括旨在演示机械系统量子态的MHz频率谐振器,以及用于该系统的低频(<1 kHz)器件。观察量子辐射压力噪声。此外,我将讨论在此过程中开发的非常规技术,例如用于确定机械谐振器中支撑介导损耗的数值求解器,以及实现超高稳定性光学参考腔的新策略。基于转移的晶体多层。©(2012)版权所有,美国光电仪器工程师协会(SPIE)。摘要的下载仅允许个人使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号