首页> 外文会议>Optical Online Industrial Process Monitoring >Recent advances in combustion flow-field imaging measurements in high-pressure liquid-fueled gas turbine combustor concepts
【24h】

Recent advances in combustion flow-field imaging measurements in high-pressure liquid-fueled gas turbine combustor concepts

机译:高压液体燃料燃气轮机燃烧室概念中燃烧流场成像测量的最新进展

获取原文
获取原文并翻译 | 示例

摘要

Abstract: Future gas turbine combustor designs for aerospace applications will be required to meet severe restrictions on environmentally harmful emissions. To meet the target emission reduction goals, these combustors will operate at temperatures and pressures greatly exceeding those of present day aero-powerplants. New diagnostic methods are required to provide insight into understanding the complex physical and chemical processes extant at these conditions because traditional diagnostic methods are either insufficient or incapable of providing this knowledge. At NASA Glenn Research Center (GRC), several optically accessible combustor rigs have been built which allow the implementation of a suite of optical diagnostic techniques that are capable of providing just this type of crucial information. The techniques employed in the GRC combustion research laboratory include planar laser-induced fluorescence and planar Mie scattering. Research efforts have been quite successful probing both non-reacting and reacting flowfields of many kerosene-fueled combustor and combustor subcomponent design at pressures approaching 2.0 MPa, and temperatures near 2100 K. Images that map out combustion intermediate species such as OH distribution, fuel spray patternation, and fuel to air ratio contour mapping have been obtained for many different fuel injector designs and configurations. A novel combination of multiple planar images and computational analysis allows a 3D capability that greatly enhances the evaluation of the combustion processes and flowfields examined in this study. !8
机译:摘要:将要求未来的航空航天燃气轮机燃烧室设计满足对环境有害排放的严格限制。为了达到目标的减排目标,这些燃烧器将在远远超过当今航空动力装置的温度和压力下运行。需要新的诊断方法来提供洞察力,以了解在这些条件下存在的复杂物理和化学过程,因为传统的诊断方法不足或无法提供此知识。在美国宇航局格伦研究中心(GRC),已经建造了几套光学可访问的燃烧器装置,这些装置可以实施一套光学诊断技术,这些技术能够提供这类关键信息。 GRC燃烧研究实验室采用的技术包括平面激光诱导的荧光和平面Mie散射。研究工作已经非常成功地在压力接近2.0 MPa,温度接近2100 K的情况下,探测了许多煤油燃烧器和燃烧器子组件设计的非反应流和反应流场。图像描绘了燃烧中间物质,例如OH分布,燃料喷雾对于许多不同的燃料喷射器设计和配置,已经获得了图案化以及燃料与空气比的轮廓映射。多个平面图像和计算分析的新颖结合,使3D功能大大增强了对本研究中检查的燃烧过程和流场的评估。 !8

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号