首页> 外文会议>Optical Elastography and Tissue Biomechanics >Corneal biomechanical properties from air-puff corneal deformation imaging
【24h】

Corneal biomechanical properties from air-puff corneal deformation imaging

机译:空气囊角膜变形成像的角膜生物力学特性

获取原文
获取原文并翻译 | 示例

摘要

The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.
机译:气吹系统与实时角膜成像(即光学相干断层扫描(OCT)或Scheimpflug)的组合是一种评估体内角膜组织动态生物力学特性的有前途的方法。在这项研究中,我们介绍了一个实验系统,该系统与有限元建模一起,可以从离体和体内角膜变形成像中测量角膜的生物力学性能。使用光谱OCT仪器和非共线配置的非接触式眼压计的吹气装置,对整个角膜横截面的角膜变形进行成像,并获得角膜时间变形的高速测量结果顶尖。定量分析可以直接提取多个变形参数,例如跨时间的顶点压痕,最大压痕深度,时间对称性和最大变形时的峰距。证明了该技术的潜力,并将其与使用Scheimpflug的气嘴成像进行了比较。在14只新鲜去核的猪眼和5只人类供体眼上进行离体测量。在九个人眼上进行体内测量。研究了角膜变形与眼内压(IOP,15-45 mmHg),脱水,角膜刚度变化(通过紫外线角膜交联,CXL产生)以及不同边界条件(巩膜,眼肌)的关系。几何变形参数用作反有限元模拟的输入,以检索角膜动态弹性和粘弹性参数。时空变形剖面对IOP非常敏感。 CXL显着减少了角膜压痕(1.41x),并且角膜变形轮廓的时间对称性发生了变化(1.65x),表明治疗后粘弹性的变化。将吹气与动态成像和有限元建模相结合,可以对体内角膜生物力学进行表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号