首页> 外文会议>Offshore Technology Conference;ExxonMobil;FMCTechnologies;Schlumberger >Fluid Characterization with LWD Resistivity and Capture Cross Section Enhances Understanding of Horizontal Well Production – A Case Study in a Siliciclastic Brownfield
【24h】

Fluid Characterization with LWD Resistivity and Capture Cross Section Enhances Understanding of Horizontal Well Production – A Case Study in a Siliciclastic Brownfield

机译:具有随钻测井电阻率和俘获横截面的流体特征可提高对水平井产量的认识-以硅质碎屑棕壤为例

获取原文
获取原文并翻译 | 示例

摘要

In this case study, we examine oil wells in a brownfield, where water production is a major concern. Therntarget reservoirs consist of several thin sandstone beds with excellent lateral extension. As a result, thernoperator generally chooses to produce from long horizontal sections. In order to better understandrnproduction and make informed decision about future development plans, it is critical for the operator tornaccurately characterize fluids in the field through well logging. The challenge in formation evaluation liesrnin the uncertainty in formation salinity, because the injected water makes formation water salinity highlyrnvariable. In such environments, saturation equations that rely on a good knowledge of the water salinity,rnsuch as resistivity-based equations (Archie) or ther mal neutron capture cross section (Sigma), cannot fullyrncapture the variability in fluids distribution in the reservoir. The problem is further complicated byrnlow-resistivity-pay, where the resistivity contrast between water and pay zones is quite small.rnA recently proposed workflow can solve for water salinity at each depth level by simultaneouslyrninverting for water saturation (Sw) and water resistivity (Rw) from resistivity and Sigma logs. This methodrndoes not require a priori knowledge of water salinity. One can further compute an irreducible waterrnsaturation (Swi) from lithological dry weights, which in turn are derived from geochemical logs. Thernamount of water that’s movable in the pore space is then given by Sw – Swi. We can use Sw – Swi as arnqualitative indicator of water floods distribution and use it to understand fluids production of horizontalrnwells and design the next phase of development to target bypassed hydrocarbon.rnIn this report, we studied the LWD logs and production history of 3 horizontal wells in a brownfield,rnwhere formation salinity is highly variable. It is found that water production is directly related to Sw – Swi.rnWe also show that resistivity-based saturation equations can give misleading interpretation of the fluidrntype due to variable salinity. Adding Sigma into the interpretation model accounts for salinity changes andrngives results that are consistent with production history.
机译:在本案例研究中,我们检查了棕田中的油井,那里的水生产是一个主要问题。目标储层由几个薄砂岩床组成,这些砂岩床具有出色的横向延伸性。结果,热沉处理器通常选择从较长的水平截面进行生产。为了更好地了解产量并就未来的开发计划做出明智的决定,对于操作员通过测井准确地表征油田中的流体至关重要。地层评价的挑战在于地层盐度的不确定性,因为注入的水使地层水盐度高度可变。在这样的环境中,依赖于水盐度知识的饱和方程式,例如基于电阻率的方程式(Archie)或热中子俘获截面(Sigma),无法完全捕获储层中流体分布的变化性。低电阻率补偿使问题变得更加复杂,其中水和产层之间的电阻率对比非常小。最近提出的工作流程可以通过同时反演水饱和度(Sw)和水电阻率(Rw)来解决每个深度水平的水盐度。 )从电阻率和西格玛测井。该方法不需要先验的水盐度知识。可以从岩性干重中进一步计算出不可还原的水饱和度(Swi),该干重又从地球化学测井得出。然后,由Sw – Swi给出在孔隙空间中可移动的水的热量。我们可以使用Sw – Swi作为水驱分布的定性指标,并用它来理解水平井的流体生产,并设计下一阶段的开发目标是绕过的碳氢化合物。在本报告中,我们研究了3口水平井的随钻测井和生产历史在一个棕地,那里的盐度变化很大。我们发现水的生产与Sw – Swi.rn直接相关。我们还表明,由于盐度的变化,基于电阻率的饱和度方程可能会误导流体类型。将Sigma添加到解释模型中可解释盐度变化和与生产历史一致的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号