首页> 外文会议>Offshore Europe oil gas exhibition conference >Gas Holdup Imaging Identifies Complex Gas-Liquid Flow Regimes and Introduces a New Velocity Measurement In a Long, Cased Hole, Horizontal, Production Well
【24h】

Gas Holdup Imaging Identifies Complex Gas-Liquid Flow Regimes and Introduces a New Velocity Measurement In a Long, Cased Hole, Horizontal, Production Well

机译:气体滞留率成像可识别复杂的气液流态,并在长套管井水平生产井中引入新的速度测量

获取原文

摘要

Gas holdup probes run in a producing horizontal well onthe Norwegian continental shelf are used to identify downholeflow regimes and compute the velocity of gas inintermittent flow.The observed flow regimes are compared with thepredictions of a number of gas-liquid flow correlations. Thetheory and quality of velocity correlations are discussed.IntroductionA number of horizontal gas-liquid flow models exist andare routinely used to predict the down hole flow regime thatwill be encountered under normal production and loggingoperations. As these models tend to be derived from, orvalidated by, surface observations at relatively low pressuresand low gas densities it would be reassuring to test or validatethese models under real down-hole conditions.The identification of correct flow regime is important forthe production log interpretation, as it dictates which slipmodel to use. In particular the ability to distinguish dispersedbubble flow from the other flow regimes is important as slipeffects are believed to be negligible in dispersed bubble flow.Similarly the stratified and intermittent flow regimes mayhave quite different slip velocities.Traditional global measurements of nuclear density or asingle dielectric sensor cannot directly see the downhole flowregime. Only the recent introduction of distributed gas holdupprobes in production logging toolstrings permits the downholeflow regime to be imaged and determined.This technique was applied to a North Sea well producingsaturated oil and gas from a 1400 m horizontal. The well iscompleted with a 7” cemented and perforated liner. In thisexample, due to the happy conjunction of an undulating wellpath and a steadily increasing flow rate, the productionlogging sensors can see stratified flow, intermittent flow, andbubble flow. This, almost textbook, collection of flow regimesis tested against a number of models to see how well themodels agree with this particular reality.As the local probes are not only distributed radially aroundthe borehole, but also separated axially, the delay betweenholdup disturbances (in intermittent flow regimes) as theytravel from one tool to another can be converted into avelocity. This has been performed and a gasvelocity computed.
机译:在挪威大陆架的一个生产水平井中运行的气体滞留探针用于识别井下流态并计算气体间歇流动的速度。将观察到的流态与多种气液流相关性的预测结果进行比较。简介讨论了速度相关性的理论和质量。引言存在许多水平气液流动模型,这些模型通常用于预测正常生产和测井作业下会遇到的井下流动状态。由于这些模型往往是从相对低压和低气体密度下的地面观测资料推导或验证的,因此在实际井下条件下对这些模型进行测试或验证将是令人放心的。正确的流态识别对于生产测井解释至关重要,因为它规定了要使用的滑模。特别是能够将分散的气泡流与其他流态区分开来的能力很重要,因为据信在分散的气泡流中滑移效应可以忽略不计。类似地,分层和间歇的流态可能具有完全不同的滑移速度。核密度的传统整体测量或单电介质传感器无法直接看到井下流动情况。只有最近在生产测井工具串中引入分布式天然气滞留探针,才可以对井下流态进行成像和确定。该技术被应用于北海一口井,该井从1400 m的水平井生产饱和的油气。该井配有7英寸的水泥和穿孔衬管。在此示例中,由于井径波动和流量稳定增加的良好结合,采油传感器可以看到分层流,间歇流和气泡流。这个几乎是教科书的流态集合针对多个模型进行了测试,以查看模型与特定情况的吻合程度。由于局部探头不仅沿井眼径向分布,而且沿轴向分开,因此保持扰动之间的延迟(间歇性)流动状态)从一种工具传播到另一种工具时,可以转换为速度。已执行此操作并计算了气体流速。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号