首页> 外文会议>Ocean remote sensing: Methods and applications >Spectral variability of airborne ocean color data linked to variations in lidar backscattering profiles
【24h】

Spectral variability of airborne ocean color data linked to variations in lidar backscattering profiles

机译:与激光雷达后向散射剖面变化相关的机载海洋颜色数据的光谱变异性

获取原文
获取原文并翻译 | 示例

摘要

Characterization of 3-D underwater light fields from above the sea surface requires passive and active remote sensing measurements. In this work, we suggest the use of passive ocean color sensors and lidar (Light Detection and Ranging) to examine the vertical structure of optical properties in marine waters of the Northern Part of the Gulf of Alaska (NGOA). We collected simultaneous airborne remote sensing reflectance (R_(rs)) in the spectral range 443-780 nm (MicroSAS, Satlantic) and lidar-derived volume backscattering (β) profiles (0-20 m depth, wavelength = 532 nm) during August 17 2002 in shelf waters situated south of Kodiak Island off Alaska (57.48°-58.04° N, 152.91°-151.67° W). We evaluated the spectral response of R_(rs) to perturbations on vertical distribution of β by comparing the spatial variability between aggregated (250 m horizontal resolution x 1 m vertical resolution) R_(rs) spectral ratios and different lidar statistics per bin (Maximum β per bin, mean β per bin, βm, standard deviation of β per bin, β_(std), integrated β per bin, β_(int)) or group of bins (lidar volume extinction coefficient of β between 0 and 5 m depth). Sub-surface changes of βm, β_(int), and β_(std) were mainly correlated with R_(rs) (490)/R_(rs) (555) variability along the flight-track (Semi-partial correlation coefficients = 0.12 to 0.21). Our results evidenced linkages between above and below-sea surface optical properties that can be used to derive water optical constituents as a function of depth based on combined passive-active data.rnlidar, ocean color sensors, water visibility, visible spectrum, active sensors, remote sensing, vertical structure, underwater light field models
机译:从海面上方表征3-D水下光场需要被动和主动遥感测量。在这项工作中,我们建议使用无源海洋颜色传感器和激光雷达(光检测和测距)来检查阿拉斯加湾北部(NGOA)海水中光学特性的垂直结构。我们在八月期间收集了443-780 nm光谱范围内的同时机载遥感反射率(R_(rs))(MicroSAS,Satlantic)和激光雷达衍生的体积背向散射(β)轮廓(0-20 m深度,波长= 532 nm) 2002年17月17日在阿拉斯加科迪亚克岛南部的架子水域(北纬57.48°-58.04°,西经152.91°-151.67°)。我们通过比较汇总的(250 m水平分辨率x 1 m垂直分辨率)R_(rs)光谱比与每个bin的不同激光雷达统计量之间的空间变异性(最大β),评价了R_(rs)对β垂直分布扰动的光谱响应每箱,平均每箱β,βm,每箱β的标准偏差,β_(std),每箱积分β,β_(int))或箱组(β的激光雷达体积消光系数在0至5m深度之间) 。 βm,β_(int)和β_(std)的地下变化主要与沿飞行轨迹的R_(rs)(490)/ R_(rs)(555)变异性相关(半部分相关系数= 0.12)至0.21)。我们的研究结果证明了海面和海底光学特性之间的联系,这些联系可用于基于组合的被动-主动数据得出水深与深度的函数关系.rnlidar,海洋颜色传感器,水能见度,可见光谱,主动传感器,遥感,垂直结构,水下光场模型

著录项

  • 来源
    《Ocean remote sensing: Methods and applications》|2009年|P.74590F.1-74590F.9|共9页
  • 会议地点 San Diego CA(US)
  • 作者单位

    Northern Gulf Institute, Mississippi State University, MS 39529, USA Naval Research Lab, Stennis Space Center, NASA, MS 39529, USA;

    rnNaval Research Lab, Stennis Space Center, NASA, MS 39529, USA;

    rnNorthern Gulf Institute, Mississippi State University, MS 39529, USA;

    rnNaval Research Lab, Stennis Space Center, NASA, MS 39529, USA;

    rnNaval Research Lab, Washington DC, 20375, USA;

    rnNOAA Earth System Research Laboratory, CO 80305 USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号