首页> 外文会议>Nutrient removal and recovery conference 2018: innovating, Optimizing, and planning >Nutrient Whack-a-Mole - Sidestream nutrient control and assessment of the fate of sulfur, iron, and phosphorus
【24h】

Nutrient Whack-a-Mole - Sidestream nutrient control and assessment of the fate of sulfur, iron, and phosphorus

机译:营养性hack鼠-侧流养分控制和硫,铁和磷的命运评估

获取原文
获取原文并翻译 | 示例

摘要

The biological processes utilized in wastewater treatment exhibit complex biological and chemical sulfur transformations. Despite the importance of these interactions, the impact of these transformations could not be previously explored with process modelling as the majority of biokinetic matrices did not include related reactions. Recent developments in whole plant process simulators (Hauduc et al., 2017), and modifications to the anaerobic digestion model (ADM) (Flores-Alsina et al, 2016) have allowed for the assessment of the impact of sulfur transformations. The purpose of this study is to begin to understand the interactions between sulfur, iron, and phosphorus at the Trinity River Authority of Texas' Central Regional Wastewater System treatment plant that will occur with the commissioning of the solids stabilization improvements, which include the implementation of the thermal hydrolysis process, anaerobic digestion, and iron addition for struvite mitigation. Specifically, the analysis focused on the impact of ferric chloride dosing on the formation of nuisance struvite, digester pH, gaseous hydrogen sulfide production, sidestream phosphorus loads, and the characterization of the fate of sulfur, phosphorus, and iron. Process simulations were completed using Dynamita's Sumo© version 143 at ferric doses between 0 and 7,300 kilograms ferric per day. Initial simulations predict that the addition iron first acts to oxidize dissolved sulfide constituents, reducing biogas hydrogen sulfide content, and precipitates available phosphates as vivianite. The addition of ferric chloride is not predicted to have a measurable impact on struvite formation in the digesters at moderate dosing rates. Noticeable reductions in struvite are not predicted until all available phosphate has been precipitated and enough iron exits to overcome the struvite precipitative driving forces. However, increasing doses of ferric is predicted to reduce the soluble phosphorus concentration in the biosolids. By reducing this soluble phosphorus concentration in the digester and biosolids, sidestream phosphorus loading on the liquids process will be reduced. In addition, lower soluble phosphorus concentrations should lower the risk of detrimental struvite formation on the downstream dewatering equipment.
机译:用于废水处理的生物过程显示出复杂的生物和化学硫转化。尽管这些相互作用非常重要,但是由于大多数生物动力学矩阵不包括相关反应,因此以前无法通过过程建模来探索这些转化的影响。整个植物过程模拟器的最新发展(Hauduc等人,2017)以及厌氧消化模型(ADM)的改进(Flores-Alsina等人,2016)已允许评估硫转化的影响。这项研究的目的是开始了解德克萨斯州中央区域废水系统处理厂的三一河管理局在硫,铁和磷之间的相互作用。热水解过程,厌氧消化和铁的添加以减轻鸟粪石。具体来说,分析的重点是氯化铁投加量对讨厌的鸟粪石形成,消化池pH值,气态硫化氢产生,侧流磷负荷以及硫,磷和铁的命运特征的影响。使用Dynamita的Sumo©版本143(每天铁剂量为0到7300千克铁)完成工艺模拟。最初的模拟预测,添加铁首先会氧化溶解的硫化物成分,降低沼气中硫化氢的含量,并沉淀出可用的磷酸盐,如堇青石。预计添加适量的氯化铁不会对消化池中鸟粪石的形成产生可测量的影响。直到所有可利用的磷酸盐都沉淀出来并且有足够的铁排出以克服鸟粪石的沉淀驱动力后,鸟粪石才会显着减少。然而,增加铁的剂量预计会降低生物固体中的可溶性磷浓度。通过降低消化池和生物固体中的可溶性磷浓度,将减少液体工艺中的侧流磷负荷。此外,较低的可溶性磷浓度应降低在下游脱水设备上形成有害鸟粪石的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号