首页> 外文会议>Nonlinear frequency generation and conversion: materials, devices, and applications XIII >Non-collinear upconversion of incoherent light - designing infrared spectrometers and imaging systems
【24h】

Non-collinear upconversion of incoherent light - designing infrared spectrometers and imaging systems

机译:非相干光的非共线上转换-设计红外光谱仪和成像系统

获取原文
获取原文并翻译 | 示例

摘要

Upconversion of incoherent mid-infrared radiation to near visible wavelengths, offers very attractive sensitivity compared to conventional means of infrared detection. Incoherent light, focused into a nonlinear crystal, results in non-collinear phase matching of a narrow range of wavelengths for each angle of propagation. Non-collinear phase matching has been an area of limited attention for many years due to inherent incompatibility with tightly focused laser beams typically used for most second order processes in order to achieve acceptable conversion efficiency. The development of periodically poled crystals have allowed for non-critical collinear phase matching of most wavelengths, virtually eliminating the need for non-collinear phase matching. When considering upconversion of thermal light, spectral radiance is limited due to the finite temperature of the Planck radiation source. It is, however, straightforward to increase the incoherent power by increasing the receiving aperture of the upconversion unit i.e. the diameter of the upconversion laser beam. Hence, the optimal conversion efficiency for incoherent light is not achieved by tightly focused beams. In this paper we show that filling the nonlinear crystal with as large a pump beam as possible yields the best conversion as this allows for upconversion of large angles of incoming incoherent light. We present results of non-collinear mixing and how it affects spectral and spatial resolution in the image and compare against experiments. We finally discuss how it can be used to design and predict system performance and how incoherent upconversion can be used for mid-IR spectroscopy and imaging.
机译:与传统的红外检测方法相比,将不相干的中红外辐射上转换为近可见波长,可提供非常诱人的灵敏度。聚焦为非线性晶体的非相干光会导致每个传播角度的窄波长范围的非共线相位匹配。由于与通常用于大多数二阶工艺的紧密聚焦的激光束固有的不兼容,非共线相位匹配多年来一直是关注的领域,以实现可接受的转换效率。周期性极化晶体的发展已允许大多数波长的非关键共线性相位匹配,实际上消除了对非共线性相位匹配的需求。在考虑热光的上转换时,由于普朗克辐射源的温度有限,因此光谱辐射率受到限制。然而,通过增加上转换单元的接收孔径,即上转换激光束的直径,来增加非相干功率是直接的。因此,通过紧密聚焦的光束无法实现非相干光的最佳转换效率。在本文中,我们显示了用尽可能大的泵浦光束填充非线性晶体会产生最佳转换,因为这可以使入射的非相干光的大角度上转换。我们介绍了非共线混合的结果以及它如何影响图像中的光谱和空间分辨率,并与实验进行了比较。最后,我们讨论如何将其用于设计和预测系统性能,以及如何将非相干上变频用于中红外光谱和成像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号