首页> 外文会议>Next generation technologies for solar energy conversion VIII >Optimal indium-gallium-nitride Schottky-barrier thin-film solar cells
【24h】

Optimal indium-gallium-nitride Schottky-barrier thin-film solar cells

机译:最佳氮化铟镓镓肖特基势垒薄膜太阳能电池

获取原文
获取原文并翻译 | 示例

摘要

A two-dimensional model was developed to simulate the optoelectronic characteristics of indium-gallium-nitride (InζGa1-ζN), thin-film, Schottky-barrier-junction solar cells. The solar cell comprises a window designed to reduce the reflection of incident light, Schottky-barrier and ohmic front electrodes, an n-doped InζGa1-ζN wafer, and a metallic periodically corrugated back-reflector (PCBR). The ratio of indium to gallium in the wafer varies periodically in the thickness direction, and thus the optical and electrical constitutive properties of the alloy also vary periodically. This material nonhomogeneity could be physically achieved by varying the fractional composition of indium and gallium during deposition. Empirical models for indium nitride and gallium nitride, combined with Vegard's law, were used to calculate the optical and electrical constitutive properties of the alloy. The periodic nonhomogeneity aids charge separation and, in conjunction with the PCBR, enables incident light to couple to multiple surface plasmon-polariton waves and waveguide modes. The profile of the resulting charge-carrier-generation rate when the solar cell is illuminated by the AM1.5G spectrum was calculated using the rigorous coupled-wave approach. The steady-state drift-diffusion equations were solved using COMSOL, which employs finite-element methods, to calculate the current density as a function of the voltage. Mid-band Shockley-Read-Hall, Auger, and radiative recombination rates were taken to be the dominant methods of recombination. The model was used to study the effects of the solar-cell geometry and the shape of the periodic material nonhomogeneity on efficiency. The solar-cell efficiency was optimized using the differential evolution algorithm.
机译:建立了二维模型以模拟氮化铟镓(InζGa1-ζN)薄膜肖特基势垒结太阳能电池的光电特性。太阳能电池包括一个设计用于减少入射光反射的窗口,一个肖特基势垒和欧姆前电极,一个n掺杂InζGa1-ζN晶片以及一个金属周期性波纹背反射器(PCBR)。晶片中铟与镓的比例在厚度方向上周期性变化,因此合金的光学和电本构特性也周期性变化。这种材料的不均匀性可以通过在沉积过程中改变铟和镓的分数组成来物理实现。氮化铟和氮化镓的经验模型与Vegard定律相结合,用于计算合金的光学和电本构性质。周期性的非均质性有助于电荷分离,并与PCBR结合使用,可使入射光耦合到多个表面等离激元极化波和波导模式。使用严格的耦合波方法计算了当太阳能电池被AM1.5G光谱照射时所产生的电荷载流子产生速率的分布。使用COMSOL求解稳态漂移扩散方程,COMSOL采用有限元方法计算电流密度与电压的关系。中频Shockley-Read-Hall,Auger和辐射重组率被认为是重组的主要方法。该模型用于研究太阳能电池几何形状和周期性材料非均匀性形状对效率的影响。使用差分进化算法优化了太阳能电池效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号