首页> 外文会议>Next-Generation Spectroscopic Technologies VIII >Is 'Good Enough' Good Enough for Portable Visible and Near-visible Spectrometry?
【24h】

Is 'Good Enough' Good Enough for Portable Visible and Near-visible Spectrometry?

机译:“足够好”对于便携式可见和近可见光光谱仪是否足够?

获取原文
获取原文并翻译 | 示例

摘要

Some uses of portable spectrometers require the same quality as laboratory instruments. Such quality is challenging because of temperature and humidity variation, dust, and vibration. Typically, one chooses materials and mechanical layout to minimize the influence of these noise and background sources. Mechanical stability is constrained by limits on instrument mass and ergonomics. An alternative approach is to make minimally adequate hardware, compensating for variability in software. We describe an instrument developed specifically to use software to compensate for marginal hardware. An initial instantiation of the instrument is limited to 430 - 700 nm. Simple changes will allow expansion to cover 315 - 1000 nm. Outside this range, costs are likely to increase significantly. Inherent wavelength calibration comes from knowing the peak emission wavelength of an LED light source, and fitting of instrument dispersion to a model of order placement with each measurement. Dynamic range is determined by the product of camera response and intentionally wide throughput variation among hundreds of diffraction orders. Resolution degrades gracefully at low light levels, but is limited to ~ 2 nm at high light levels as initially fabricated and ~ 1 nm in principle. Stray light may be measured in real-time. Diffuse stray light can be employed for turbidimetry fluorimetry, and to aid compensation of working curve nonlinearity. While unsuitable for, Raman spectroscopy, the instrument shows promise for absorption, fluorescence, reflectance, and surface plasmon resonance spectrometries. To aid non-expert users, real-time training, measurement sequencing, and outcome interpretation are programmed with QR codes or web-linked instructions.
机译:便携式光谱仪的某些用途要求与实验室仪器具有相同的质量。由于温度和湿度的变化,灰尘和振动,这种质量具有挑战性。通常,人们会选择材料和机械布局以最大程度地减少这些噪声和背景源的影响。机械稳定性受到仪器质量和人体工程学的限制。另一种方法是制造足够少的硬件,以补偿软件的可变性。我们描述了一种专门为使用软件来补偿边际硬件而开发的仪器。仪器的初始实例仅限于430-700 nm。简单的更改将允许扩展到315-1000 nm。超出此范围,成本可能会大大增加。固有的波长校准来自于了解LED光源的峰值发射波长,并将仪器色散与每次测量的订单放置模型拟合。动态范围由相机响应和数百个衍射级之间有意的宽通量变化的乘积确定。分辨率在低光水平下会适度降低,但在最初制造时在高光水平下限制为〜2 nm,原则上限制为〜1 nm。杂散光可以实时测量。漫射杂散光可用于比浊荧光法,并有助于补偿工作曲线的非线性。尽管不适合拉曼光谱法,但该仪器显示了吸收,荧光,反射率和表面等离振子共振光谱法的前景。为了帮助非专业用户,可以使用QR码或网络链接的指令对实时培训,测量序列和结果解释进行编程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号