首页> 外文会议>NEA No.5308; Information Exchange Meeting; 20031002-03; Argonne,IL(US) >HYDROGEN GENERATION USING A CALCIUM-BROMINE THERMOCHEMICAL WATER-SPLITTING CYCLE
【24h】

HYDROGEN GENERATION USING A CALCIUM-BROMINE THERMOCHEMICAL WATER-SPLITTING CYCLE

机译:钙-溴热化学水分解法制氢

获取原文
获取原文并翻译 | 示例

摘要

The Secure Transportable Autonomous (STAR-H2) project is part of the US Department of Energy's (DOE's) Nuclear Energy Research Initiative (NERI) to develop Generation Ⅳ (Gen Ⅳ) nuclear reactors that will supply high-temperature (over 1 100K; 800℃) heat. The goal of NERI is to develop an economical, proliferation-resistant, sustainable, nuclear-based energy supply system based on a modular-sized fast reactor that is passively safe and cooled with heavy liquid metal. STAR-H2 consists of the following: 1. A 400-MW_(Thermal) reactor with Pb as the primary coolant; 2. Exchange of primary Pb coolant for a salt heat transfer pipe; 3. Exchange of salt for steam; 4. A combined thermochemical water-splitting cycle to generate hydrogen; 5. A CO_2 Brayton cycle to generate electricity (η = 47%), and 6. An optional capability to produce potable water from brackish or salt water. Here we review the thermodynamic basis for a three-stage calcium-bromine (Ca-Br) water-splitting cycle. The research builds upon pioneering work on the four-stage University of Tokyo Cycle #3 (UT--3) process, but employs a plasma-chemical stage for the recovery of HBr as H_2 and Br_2 as a substitute for the final two stages of UT-3. A detailed process design, developed by using the ASPEN model, suggests that the practical efficiency is 39-45% for the STAR-H2 Ca-Br cycle. For each tonne of H_2 produced hourly (1 000 kg/h), the demand for electricity for the plasma-chemical stage (13.5 MW_e) is much lower than the demand (28.5 MW_e) for a steam-electrolysis system. At current power grid heat-to-electricity efficiencies (η=33%), there is a clear benefit for using the STAR-H2 Ca-Br cycle. Anticipating Brayton cycle performance (η = 47%), H_2 production will demand a total power of 74 MW_(Thermal) per tonne of H_2 from the Gen Ⅳ reactor. It is important to recognise that there are capital and operating cost tradeoffs that will depend on the market value of low-carbon electricity in the future. Steam-electrolysis is a far less complex cycle than Ca-Br, but that simplicity comes at a high - and potentially uneconomical - cost for electric power.
机译:安全可运输自主(STAR-H2)项目是美国能源部(DOE)核能研究计划(NERI)的一部分,该计划旨在开发将提供高温(超过1100万; 800台)的Ⅳ代(GenⅣ)核反应堆。 ℃)加热。 NERI的目标是基于模块化的快速反应堆,开发一种经济,抗扩散,可持续,基于核的能源供应系统,该反应堆具有被动安全性并使用重金属进行冷却。 STAR-H2由以下部分组成:1.一个以Pb为主要冷却剂的400-MW_(热)反应堆; 2.将主要的Pb冷却剂换成盐的传热管; 3.用盐交换蒸汽; 4.组合的热化学水分解循环以产生氢气; 5. CO_2布雷顿循环以发电(η= 47%),以及6.一种可选的能力,可以从微咸水或盐水中产生饮用水。在这里,我们回顾了三阶段溴化钙(Ca-Br)水分解循环的热力学基础。该研究基于东京大学四阶段循环3(UT--3)工艺的开创性工作,但采用等离子化学阶段回收HBr的H_2和Br_2来替代最后两个阶段的HBr。 UT-3。使用ASPEN模型开发的详细过程设计表明,STAR-H2 Ca-Br循环的实际效率为39-45%。对于每小时产生的每吨H_2(1000 kg / h),等离子体化学阶段的电力需求(13.5 MW_e)远远低于蒸汽电解系统的电力需求(28.5 MW_e)。在当前电网的热电效率(η= 33%)下,使用STAR-H2 Ca-Br循环具有明显的好处。预期布雷顿循环性能(η= 47%),H_2的生产将需要来自第四代反应堆的每吨H_2 74 MW_(热)的总功率。重要的是要认识到,在资本和运营成本之间的权衡将取决于未来低碳电力的市场价值。蒸汽电解的循环要比Ca-Br复杂得多,但是这种简单化需要付出高昂的,潜在的不经济的电力成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号