首页> 外文会议>Nanomechanical testing in materials research and development V >NANOTWIN GOVERNED TOUGHENING MECHANISM IN HIERARCHICALLY STRUCTURED MATERIALS
【24h】

NANOTWIN GOVERNED TOUGHENING MECHANISM IN HIERARCHICALLY STRUCTURED MATERIALS

机译:NANOTWIN在层级结构材料中的强化机理

获取原文
获取原文并翻译 | 示例

摘要

As an important class of natural biocomposite materials, mollusk shells possess remarkable mechanical strength and toughness as a consequence of their hierarchical structuring of soft organic and hard mineral constituents through biomineralization. Strombus gigas, one of the toughest mollusk shell (99 wt% CaCO_3, 1 wt% organic), contains high density of nanoscale {110} growth twins in its third order lamellae, the basic building block of the material. Although the existence of these nanotwins has been known for decades their roles and functions in mechanical behaviors and properties of biological materials are still unrevealed because numerous studies in recent years aimed to investigate the relationship between mechanical properties and the elegant nano- and hierarchical structures. To evaluate the actual role of these nanotwins, we performed in situ TEM deformation experiment, large scale atomistic simulations and finite element modeling. With these analytic tools, we revealed nano scale twins in conch shell provide a basis of the several orders higher toughness comparing to twin free aragonite. In terms of qualitative experiment, we observed nanotwins can hinder crack propagation effectively comparing to twin free single crystal aragonite and leaving phase transformed area near crack tip (Fig 1 a-c) by in situ TEM deformation experiment. Through large scale MD simulation, we confirmed this phase transformation as a hitherto unknown toughening mechanism governed by nanoscale twins. For the quantitative comparison in terms of toughness, we performed specially designed in situ TEM experiments additionally for conch shell and aragonite single crystal so as to assess the contributions of these nanoscale twins on toughness of conch shell (Fig 1 .d). By combining in situ TEM nanoscale mechanical test and FEM simulation, we found that nanotwins in 3rd order lamellar can increase fracture energy an order magnitude higher than twin free aragonite and this effect become amplified via structural hierarchy. The unique properties and structural features of nanotwinned aragonitic conch shell are expected to provide a guide to designing and fabricating hierarchically structured biomimetic materials with high toughness and high modulus.
机译:软体动物壳作为一类重要的天然生物复合材料,由于通过生物矿化作用将软有机和硬矿物成分进行分级结构,因此具有出色的机械强度和韧性。 Strombus gigas是最坚硬的软体动物壳(99 wt%的CaCO_3,1 wt%的有机物)之一,在其三阶薄片(材料的基本构造材料)中包含高密度的纳米级{110}生长孪晶。尽管这些纳米孪晶的存在已经有数十年的历史了,但是由于近年来的大量研究旨在研究机械特性与优雅的纳米结构和层级结构之间的关系,因此尚未揭示它们在机械行为和生物材料特性中的作用和功能。为了评估这些纳米孪晶的实际作用,我们进行了原位TEM变形实验,大规模原子模拟和有限元建模。通过这些分析工具,我们发现海螺壳中的纳米级孪晶为游离双free石提供了几个数量级更高的韧性的基础。在定性实验方面,我们通过原位TEM变形实验观察到,与孪晶自由单晶文石相比,纳米孪晶可以有效地阻止裂纹扩展,并在裂纹尖端附近留下相变区域(图1a-c)。通过大规模的MD模拟,我们证实了这种相变是迄今为止由纳米级孪晶控制的未知增韧机制。为了进行韧性方面的定量比较,我们另外针对海螺壳和文石单晶进行了专门设计的原位TEM实验,以评估这些纳米级孪晶对海螺壳韧性的贡献(图1.d)。通过结合原位TEM纳米级机械测试和有限元模拟,我们发现三阶层状纳米孪晶可以增加断裂能,其数量比双自由ar石高出一个数量级,并且这种效应通过结构层次得到放大。纳米孪生的精炼海螺贝壳的独特性能和结构特征有望为设计和制造具有高韧性和高模量的分层结构仿生材料提供指导。

著录项

  • 来源
  • 会议地点 Albufeira(PT)
  • 作者单位

    Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea;

    Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea;

    Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea;

    Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea;

    Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea;

    School of Engineering, Brown University, Providence, RI 02912, USA;

    School of Engineering, Brown University, Providence, RI 02912, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nanotwin; Toughening mechanism; in situ TEM; Atomistic simulation; FEM;

    机译:纳米双胞胎增韧机制;原位TEM原子模拟;有限元法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号