首页> 外文会议>Nanoengineering: Fabrication, properties, optics, and devices IX. >Dissolved oxygen sensing based on fluorescence quenching of ceria nanoparticles
【24h】

Dissolved oxygen sensing based on fluorescence quenching of ceria nanoparticles

机译:基于二氧化铈纳米粒子荧光猝灭的溶解氧传感

获取原文
获取原文并翻译 | 示例

摘要

The development of oxygen sensors has positively impacted the fields of medical science, bioengineering, environmental monitoring, solar cells, industrial process control, and a number of military applications. Fluorescent quenching sensors have an inherent high sensitivity, chemical selectivity, and stability when compared to other typesof sensors. While cerium oxide thin films have been used to monitor oxygen in the gas phase, the potential of cerium oxide (ceria) nanoparticles as the active material in sensor for oxygen gas has only recently been investigated. Ceria nanoparticles are one of the most unique nanomaterials that are being studied today due to the diffusion and reactivity of its oxygen vacancies, which contributes to its high oxygen storage capability. The reactivity of the oxygen vacancies, which is also related to conversion of cerium ion from the Cesup+4/sup to Cesup+3/sup state, affects the fluorescence properties of the ceria nanoparticles. Our research demonstrates that the ceria nanoparticles (~7 nm in diameter) have application as a fluorescence quenching sensor to measure dissolved oxygen in water. We have found a strong inverse correlation between the amplitude of the fluorescence emission (λsubexcitation/sub = 430 nm and λsubpeak/sub = 520 nm) and the dissolved oxygen concentration between 5 – 13 mg/L. The Stern-Volmer constant, which is an indication of the sensitivity of gas sensing is 184 Msup-1/sup for the ceria nanoparticles. The results show that ceria nanoparticles can be used in an improved, robust fluorescence sensor for dissolved oxygen in a liquid medium.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
机译:氧传感器的发展已经对医学,生物工程,环境监测,太阳能电池,工业过程控制以及许多军事应用领域产生了积极影响。与其他类型的传感器相比,荧光猝灭传感器具有固有的高灵敏度,化学选择性和稳定性。尽管氧化铈薄膜已被用于监测气相中的氧气,但是氧化铈(二氧化铈)纳米颗粒作为氧气传感器中的活性材料的潜力直到最近才被研究。由于其氧空位的扩散和反应性,二氧化铈纳米颗粒是当今正在研究的最独特的纳米材料之一,这有助于其高储氧能力。氧空位的反应性也与铈离子从Ce +4 转变为Ce +3 状态有关,影响二氧化铈纳米粒子的荧光性能。我们的研究表明,二氧化铈纳米颗粒(直径约7 nm)可作为荧光猝灭传感器来测量水中的溶解氧。我们发现荧光发射的振幅(λ<激发> = 430 nm和λ<峰值> = 520 nm)与溶解氧浓度在5之间有很强的反相关性。 – 13毫克/升。表示二氧化铈纳米粒子的气体感测灵敏度的Stern-Volmer常数为184 M -1 。结果表明,二氧化铈纳米颗粒可用于改进的,坚固的荧光传感器中,用于检测液体介质中的溶解氧。©(2012)COPYRIGHT光电仪器工程师协会(SPIE)。摘要的下载仅允许个人使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号