首页> 外文会议>NACE international corrosion conference and expo >Carbon steel and Stainless-steel cathodic protection design data in Deepsea Water - Influence of the environment on the biofilm cathodic activity
【24h】

Carbon steel and Stainless-steel cathodic protection design data in Deepsea Water - Influence of the environment on the biofilm cathodic activity

机译:深海水中的碳钢和不锈钢阴极保护设计数据-环境对生物膜阴极活性的影响

获取原文

摘要

In natural seawater, many parameters might influence the cathodic protection current demand such as potential, temperature, dissolved oxygen content, biofilm and fouling activity, and calcareous deposit formation. The actual deepsea environment cannot be easily reproduced at laboratory scale. In this study, the influence of the depth on the cathodic protection criteria of carbon steel and stainless steel was investigated in intermediary (1020 m depth) and deep water (2020 m) at the same location. For this purpose, at set of corrosion and environmental sensors, as well as metallic coupons, were exposed during 11 months in Azores in the Atlantic Ocean. On stainless steel, a strong characteristic cathodic depolarization due to biofilm activity was observed in deep water and not in intermediary water. The biological-induced cathodic activity appears thus to be dependent on the environment, even in open seawater. In presence of an electroactive biofilm high and relatively stable current densities were measured. Under such conditions, an important structure depolarization appears, affecting thus the CP design and efficiency. For carbon steel, the cathodic protection data collected in-situ show that the initial and mean (after 11 months) current densities are higher than those recommended by the DNVGL RP B401 standard. Even if mean current densities are expected to continue to decrease slowly with further exposure time, so probably tending to the standard recommendations, the DNVGL RP B401 standard might not be conservative in terms of current densities criteria for these environments.
机译:在天然海水中,许多参数可能会影响阴极保护电流的需求,例如电势,温度,溶解氧含量,生物膜和结垢活性以及钙质沉积物的形成。实际的深海环境无法在实验室规模下轻松再现。在这项研究中,研究了在同一位置的中间(深度为1020 m)和深水(2020 m)中深度对碳钢和不锈钢阴极保护标准的影响。为此,在大西洋的亚速尔群岛进行了为期11个月的腐蚀和环境传感器以及金属试样的暴露。在不锈钢上,在深水中而不是在中间水中观察到由于生物膜活性而引起的强烈的特征性阴极去极化。因此,即使在开放海水中,生物诱导的阴极活性似乎也取决于环境。在存在电活性生物膜的情况下,可以测量到较高且相对稳定的电流密度。在这种情况下,会出现重要的结构去极化,从而影响CP设计和效率。对于碳钢,就地收集的阴极保护数据显示,初始和平均(11个月后)电流密度高于DNVGL RP B401标准推荐的电流密度。即使预期平均电流密度随着暴露时间的延长而继续缓慢降低,因此可能倾向于标准建议,但就这些环境的电流密度标准而言,DNVGL RP B401标准可能并不保守。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号