首页> 外文会议>Modeling of Casting, Welding and Advanced Solidification Processes XI vol.2 >STRESS-STRAIN MODELLING INFLUENCED BY POROSITIES IN CAST ALUMINIUM ALLOYS
【24h】

STRESS-STRAIN MODELLING INFLUENCED BY POROSITIES IN CAST ALUMINIUM ALLOYS

机译:铸造铝合金中孔隙对应力-应变模型的影响

获取原文
获取原文并翻译 | 示例

摘要

Due to the enhancing utilization of aluminium, especially in the automotive and telecom industries, it is of significance to enlighten the influence of defects on the tensile behaviour of aluminium cast alloys. Typical defects can be entrapped gas and or shrinkage porosities, oxide films or unwanted brittle phases as the iron rich β-phase. Recent research show that cracks can be initiated and propagated at these defects and a lot of comprehensive models on how these defects control the final mechanical properties have been developed. Most researchers agree on which parameters that affect the strength of a material, but there is a need for more research when it comes to the questions on how the parameters affect the material and which parameters that have the largest influence. This research paper will focus on the effect of microporosity on the tensile behaviour of Al-Si based cast alloys. A three-dimensional solid FE-model, in the commercial FE-code ABAQUS, is developed in order to predict how the volume fraction, location and the relative size of the spherical pores affect the tensile properties. The model is parametrisized regarding adjustable material data such as the strain hardening exponent n and strength coefficient K, and adjustable porosity data such as volume fraction, distribution and relative size of the pores. As for the outcome of the result i.e. the result variable, the model uses the elongation when necking first occurs in the material during a tensile test. The result shows that the strain-hardening exponent has the largest effect on the result. An increased value of n provides a more porosity-tolerant material. The highest concentrations of plastic-strain and stress occur in the vicinity of the largest pores in the material throughout the tensile test. The volume fraction of porosity has the largest effect on the result variable. A higher volume fraction of porosity gives a reduced value of the result variable. According to the model, as well as to literature, the most porosity-tolerant material is achieved when the strain-hardening exponent n is as high as possible, the volume fraction of porosity is as low as possible, and the pores are distributed in the tensile direction.
机译:由于铝的利用率提高,特别是在汽车和电信行业,铝的用途对铝铸合金的拉伸行为的影响具有启发意义。典型的缺陷可能是夹带的气体和/或收缩孔隙率,氧化膜或有害的脆性相(如富铁的β相)。最近的研究表明,裂纹可以在这些缺陷处引发和扩展,并且已经开发出许多关于这些缺陷如何控制最终机械性能的综合模型。大多数研究人员都同意哪些参数会影响材料的强度,但是当涉及到参数如何影响材料以及哪些参数影响最大时,需要进行更多的研究。本研究论文将重点研究微孔对Al-Si基铸造合金拉伸性能的影响。为了预测球形孔的体积分数,位置和相对尺寸如何影响拉伸性能,开发了一种商业有限元代码ABAQUS的三维实体有限元模型。该模型的参数设置涉及可调整的材料数据(例如应变硬化指数n和强度系数K)以及可调整的孔隙率数据(例如孔的体积分数,分布和相对大小)。至于结果的结果,即结果变量,当拉伸试验期间材料中首先出现颈缩时,模型将使用伸长率。结果表明,应变硬化指数对结果的影响最大。增加的n值提供了更耐孔隙的材料。在整个拉伸试验中,最大的塑性应变和应力浓度出现在材料中最大的孔附近。孔隙度的体积分数对结果变量影响最大。较高的孔隙率体积分数会减小结果变量的值。根据该模型以及文献,当应变硬化指数n尽可能高,孔隙率体积分数尽可能低且孔分布在孔道中时,可得到最耐孔隙的材料。拉伸方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号