首页> 外文会议>Conference on advances in optics for biotechnology, medicine and surgery >WORKFLOW FOR REAL-TIME IN-VIVO CHERENKOV-EXCITED LUMINESCENCE IMAGING DURING RADIOTHERAPY
【24h】

WORKFLOW FOR REAL-TIME IN-VIVO CHERENKOV-EXCITED LUMINESCENCE IMAGING DURING RADIOTHERAPY

机译:在放疗期间,实时in-Vivo Cherenkov-Exciting发光成像的工作流程

获取原文

摘要

Radiotherapy is a common method for treating tumors, however, radiosensitivity can vary between tumor types or within the tumor microenvironment. The ability to deliver oxygen is crucial for the generation of reactive oxygen species resulting in increased localized cytotoxic effects. Alternatively, hypoxic tumors are thought to indicate a poor prognosis and may benefit from more aggressive treatments, yet identifying tumor hypoxia early in the course of a multi-week fractionated dose regimen is currently impractical. Using a time-gated imaging system and oxygen-sensitive phosphorescent compound (PtG4) we are able to estimate in vivo pO_2 distribution at a rate of 2.6 estimates per second, which corresponds to 50+ values during a common 2Gy dose fraction. While our previous work has reported using Cherenkov-excited luminescence to estimate in vivo pO_2 during external beam radiotherapy, the dose required was often greater than a standard fraction and camera acquisition parameters required modification during treatments, resulting in interrupted workflows. The current method utilizes custom control software which cycles through camera timing parameters during acquisition. Python code using the web-based user interface JupyterLab allows for interactive analysis of the resulting image stack without the need to pay expensive licensing fees for scientific computing packages. Using open source libraries, the analysis code is able to split the image stack into respective Cherenkov excitation and phosphorescence images, which can then be further automatically segmented to find regions of interest including the subject and phosphorescent region. The intensity of the regions in the phosphorescence images are used to estimate the compound lifetime, which can then be used in the Stern-Volmer relationship to estimate pO_2. This entire process does not compromise clinical workflow and is able to provide a pO_2 estimate within minutes after delivering the fractionated dose, providing clinicians early feedback about trends in tumor hypoxia. The current method has been validated with both direct injection of 50μM PtG4 in Matrigel in a mouse flank, and 24hrs post IV injection of mouse with MDA-MB-231 tumor implanted in the flank. The mouse with the direct injection was imaged under anesthesia and while awake and mobile to test the ability of the automated segmentation algorithm (Figure below). While the signal from the IV injection was less intense, simultaneous imaging using the previously reported method and current method resulted in similar lifetime estimates. While oxygen-sensitive PtG4 exhibits a lifetime between 16μs under atmospheric oxygen and 47μs when deprived of oxygen, other compounds have also been investigated. Europium chelate nanoparticle (~600μs), Iridium-based small molecules (~5μs), Si nanoparticles (~60μs), and UV-sensitive tattoo inks (~15μs) have all been imaged using Cherenkov-excitation. Camera time-gating can be utilized to discriminate these compound when mixed in the same field, allowing for additional tools in the realm of contrast enhancement during radiotherapy imaging. Ongoing studies with PtG4 and other compounds are being conducted to further improve system sensitivity and refine imaging workflows so they are more clinically translatable.
机译:放射治疗是用于治疗肿瘤,但是,可以放射敏感性肿瘤类型之间或肿瘤微环境内变化的常用方法。输送氧气的能力对于导致增加的局部细胞毒性作用的活性氧物种的产生的关键。可替代地,缺氧肿瘤被认为表明预后不良,并且可以从更积极的治疗中获益,但识别在多周分级剂量方案的过程中早期肿瘤缺氧是目前不切实际的。使用时间选通成像系统和对氧敏感的磷光化合物(PTG4引脚),我们能够以每秒2.6估计,其共同的过程中对应于50+值2GY剂量分数的速率在体内分布PO_2来估计。虽然我们以前的工作已经利用切伦科夫激发光外束放疗期间体内PO_2估计报告,所需的剂量通常比在治疗期间需要修改标准馏分和相机采集参数,从而中断工作流越大。当前的方法采用定制的控制软件,其循环经过采集期间照相机的定时参数。使用基于Web的用户界面JupyterLab Python代码允许所产生的图像堆栈的交互分析,而不需要支付昂贵的许可费进行科学计算软件包。使用开源库,分析代码能够将图像堆分成各自切伦科夫激发和磷光图像,其然后可以进一步自动分割找到感兴趣的区域,包括主体和磷光区域。在磷光图像的区域的强度来估计的化合物有效时间,然后可以在斯特恩 - 沃尔默关系被用于估计PO_2。这整个过程不妥协的临床工作流程,并能提供分次给药后提供分钟内PO_2估计,为临床医师提供关于肿瘤缺氧趋势的早期反馈。当前的方法已经被验证与在小鼠侧腹在基质胶中的直接注射50μMPTG4引脚,并且24小时后IV注射小鼠的与MDA-MB-231肿瘤在侧翼植入。与直接注射将小鼠麻醉下成像且在清醒时和移动测试自动分割算法(下面的图)的能力。而从IV注射的信号是较不强烈,使用先前报道的方法和当前的方法同时成像导致类似的寿命的估计。虽然对氧敏感的PTG4引脚呈现下大气中的氧和缺氧时47μs16μs之间的寿命,其它化合物也进行了研究。铕螯合物纳米颗粒(〜600μs),铱基的小分子(〜5μs的),Si纳米颗粒(〜60μs的),和UV敏感的纹身油墨(〜为15μs)具有使用切伦科夫激励全部被成像。相机的时间选通可以使用在同一领域混合时区分这些化合物,放射疗法成像期间允许在对比度增强的领域的附加工具。与PTG4引脚和其它化合物正在进行的研究也在进行中,以进一步提高系统的灵敏度和精确成像工作流程,以便它们更临床平移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号