首页> 外文会议>International Manufacturing Science and Engineering Conference >MULTI-OBJECTIVE OPTIMIZATION OF WIRE ELECTRICAL DISCHARGE MACHINED ULTRA-THIN SILICON WAFERS USING RESPONSE SURFACE METHODOLOGY FOR SOLAR CELL APPLICATIONS
【24h】

MULTI-OBJECTIVE OPTIMIZATION OF WIRE ELECTRICAL DISCHARGE MACHINED ULTRA-THIN SILICON WAFERS USING RESPONSE SURFACE METHODOLOGY FOR SOLAR CELL APPLICATIONS

机译:用于太阳能电池应用的响应表面方法的电线电气放电加工超薄硅晶片的多目标优化

获取原文

摘要

Recent investigations on the fabrication of ultra-thin silicon (Si) wafers using wire-electrical discharge machining (wire-EDM) were observed to possess some inherent limitations. This includes severe thermal damage, kerf-loss, and low slicing rate, which could be detrimental towards realizing actual practical applications. The extent of thermal damage, kerf-loss, and slicing rate largely depends on the process parameters such as open voltage (OV), servo voltage (SV), and pulse on-time (T_(on)). Therefore, choosing the optimal parameters that pertain to minimum thermal damage and kerf-loss while maintaining a higher slicing rate is the key to further excel in the fabrication of Si wafers using wire-EDM. Therefore, the present study is an effort to analyze and identify the optimal parameters that relate to the most effective Si slicing in wire-EDM. A central composite design (CCD) based response surface methodology (RSM) was used for optimizing the process parameters. The capability to slice Si wafers in wire-EDM was observed to be highly influenced by the discharge energy, which had a positive impact on the overall responses. The severity of thermal damages was observed to be mainly dominated by the variation in open voltage and T_(on) due to the high diffusion of thermal energy into the workpiece, which led to intense melting and subsequent re-solidification. The parametric optimization resulted in OV = 84.32 V, SV = 42.98 V and T_(on) = 0.62 μs as the most feasible parameter that relates to comparatively high slicing rate (0.65 mm/min), low kerf-loss (280 μm) and thermal damage (18 μm) for a given machine. In general, with a decrease in spark energy slicing rate and thermal damage decreases whereas, kerf-loss increases. When spark energy decreases by 83%, there is a nearly 55% decrease in slicing rate and thermal damage and a 10% increase in kerf-loss.
机译:未观察到对使用电火花加工(线EDM)的超薄硅(Si)晶片的制造最近的调查,以具有一些固有的限制。这包括严重的热损伤,切口损失,以及低切片速度,这可能是在实现实际实际应用不利。热损伤,切口损失,和切片率的程度在很大程度上取决于工艺参数,例如开路电压(OV),伺服电压(SV),和脉冲的导通时间(T_(上))。因此,选择最佳参数,涉及到最小的热损伤和切口损失,同时保持较高的切片率在Si晶片的使用线切割制造的关键进一步Excel中。因此,本研究是分析和鉴定涉及在导线电火花加工的最有效的Si切片的最佳参数的努力。用于优化工艺参数甲中心复合设计(CCD)基于响应面分析法(RSM)。到切片的Si的能力在导线电火花加工晶片,观察到通过排出的能量,这对总的反应产生积极的影响是高度的影响。观察到热损伤的严重程度由在开路电压和T_(上)的变化而主要支配,由于高扩散热能进入工件,从而导致了激烈熔化和随后的再凝固。参数最优化导致在OV = 84.32 V,SV = 42.98 V和T_(上)= 0.62微秒作为涉及比较高的切片率(0.65毫米/分钟),低切口损失(280微米)最可行的参数和热损伤(18微米),用于一个给定的机器。一般情况下,在火花能量切片率和热损伤的减小而减小,而,切口损失增加。当火花能量由83%减少,存在切片率和热损伤一个近55%的下降和在切口损失增加了10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号