首页> 外文会议>ASME International Conference on Ocean, Offshore and Arctic Engineering >OPTIMIZING WELL LOCATIONS IN GREEN FIELDS USING FAST MARCHING METHOD: OPTIMIZE WELL LOCATIONS FOR MILLIONS OF CELLS USING HUNDREDS OF SCENARIOS AND REALIZATIONS WITH HIGH ACCURACY IN SECONDS
【24h】

OPTIMIZING WELL LOCATIONS IN GREEN FIELDS USING FAST MARCHING METHOD: OPTIMIZE WELL LOCATIONS FOR MILLIONS OF CELLS USING HUNDREDS OF SCENARIOS AND REALIZATIONS WITH HIGH ACCURACY IN SECONDS

机译:使用快速行进方法优化绿色字段中的井位置:优化数百个场景和高精度的井位置为数百万个单元格,以秒为单位

获取原文

摘要

To perform an optimization study for a green field (newly discovered field), one must collect the information from different parts of the field and integrate these data as accurately as possible in order to construct the reservoir image. Once the image, or alternate images, are constructed, reservoir simulation allows prediction of dynamic performance of the reservoir. As field development progresses, more information becomes available, enabling us to continually update and, if needed, correct the reservoir description. The simulator can then be used to perform a variety of exercises or scenarios, with the goal of optimizing field development and operation strategies. We are often confronted with important questions related to the most efficient well spacing and location, the optimum number of wells needed, the size of the production facility needed, the optimum production strategies, the location of the external boundaries, the intrinsic reservoir properties, the predominant recovery mechanism, the best time and location to employ infill drilling and the best time and type of the improved recovery technique we should implement. These are some of the critical questions we may need to answer. A reservoir simulation study is the only practical means by which we can design and run tests to address these questions in sufficient detail. From this perspective, reservoir simulation is a powerful screening tool. The magnitude, time and complexity of a reservoir simulation problem depends in part on the available computational environment. For instance, simple material balance calculations are now routinely performed on desktop personal computers, while running a field-scale three-dimensional simulator may call for the use of a supercomputer and may take many days to finish. We must also take into account the storage requirements and limitations, CPU time demand and the general architecture of the machine. The problem arises when there is a large amount of data available with a study objective that requires running several scenarios incorporating millions of grid cells. This will limit the applicability of reservoir simulation as it will be computationally very inefficient. For example, determining the optimum well locations in a field that will result in the most efficient production rate scenario requires a large number of simulation runs which can make it very inefficient. This is because one will have to consider multiple well scenarios in multiple realizations. The main purpose of this paper is to use a novel methodology known as the Fast Marching Method (FMM) to find the optimum well locations in a green oil field that will result in the most efficient production rate scenario. The concept of radius of investigation is fundamental to well test analysis. The current well test analysis relies on analytical solutions based on homogeneous or layered reservoirs. The FMM will enable us to calculate the radius of investigation or pressure front as a function of time without running any simulation and with a high degree of accuracy. The calculations can be done in a matter of seconds for multi-millions of cells.
机译:为了对绿地(新发现的字段)进行优化研究,必须从场的不同部分收集信息,并尽可能准确地将这些数据集成,以构造储存器图像。一旦构造了图像或替代图像,储存器仿真允许预测储存器的动态性能。由于现场开发进展,更多信息变得可用,使我们能够不断更新,并且如果需要,可以更正储库描述。然后可以使用模拟器来执行各种练习或场景,其目标是优化现场开发和操作策略。我们经常面对与最有效的井间距和位置相关的重要问题,所需的井中的最佳数量,所需的生产设施的大小,最佳的生产策略,外界的位置,内在储层属性,采用填充钻井的最佳时间和地点以及我们应该实施的改进恢复技术的最佳时间和地点。这些是我们可能需要回答的一些关键问题。水库仿真研究是我们可以设计和运行测试以解决这些问题的唯一实用手段。从这个角度来看,水库仿真是一个强大的筛选工具。储层模拟问题的幅度,时间和复杂性依赖于可用的计算环境。例如,现在在桌面个人计算机上经常执行简单的材料平衡计算,同时运行现场规模的三维模拟器可以要求使用超级计算机,可能需要多天完成。我们还必须考虑到存储要求和限制,CPU时间需求和机器的一般架构。当研究目标有大量数据时,出现了问题,需要运行多个栅格细胞的若干场景。这将限制储层模拟的适用性,因为它将是计算非常低效的。例如,确定将导致最有效的生产率方案的字段中的最佳阱位置需要大量的模拟运行,这可以使其非常低效。这是因为一个人必须考虑多个良好的情景。本文的主要目的是使用称为快速行进方法(FMM)的新方法,以找到将导致最有效的生产率场景中的绿色油田中的最佳井位置。调查半径的概念是对测试分析的基础。基于均相或分层储层的分析溶液依据井试验分析依赖于分析溶液。 FMM将使我们能够在不运行任何模拟和高精度的情况下计算调查半径或压力前沿。计算可以在几百万个细胞的几秒钟内完成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号