首页> 外文会议>International Instrumentation Symposium >Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls
【24h】

Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls

机译:用于智能自适应发动机控制的先进传感器和包装技术

获取原文

摘要

The development of a pressure/temperature multi-sensor based on a combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh environment electronics packaging is discussed. The pressure/temperature multi-sensor enables unprecedented monitoring of propulsion, energy generation and industrial systems. Multi-sensor approach will reduce control system weight and wiring complexity, design time and cost. Multi-sensor control strategies do better than the single-sensor strategy on the basis of both to raise the accuracy and fault tolerance ability effectively. The resulting sensors and packaging can be manufactured at low cost and operate in corrosive environments, while measuring temperatures up to 2552°F (1400°C) with simultaneous pressure measurements up to 1000 psi. The combination of a high-temperature, high pressure-ratio compressor system and adaptive engine technologies enable high thrust and efficiency. The multi-sensor approach will potentially provide an opportunity for sensor level fusion where multiple sensors measuring correlated parameters. In-situ deployment of these sensors enables advanced compressor and combustor control schemes for prognostics and active control that facilitate environmentally responsible aviation. Current efforts include: combining the sensor technology with high temperature electronics to produce 'smart' sensors for distributed engine controls, capacitive transducer elements with increased dynamic bandwidth, and advanced sensor packaging technologies. The key technologies of intelligent engines are active controls, advanced diagnostics, and prognostics which require smart sensors. The ability to sense the current engine operating condition and state and react with adaptive controls requires robust sensors. It is essential that these sensors are tested in a relevance environment. In this paper, some testing will be reported. Additional engine testing is planned through the NASA Vehicle Integrated Propulsion Research (VIPR) and Air Force Small Component and Engine Structural Assessment Research (S-CAESAR) Engine Demonstrator programs.
机译:讨论了基于微机电系统(MEMS)传感器技术,新型陶瓷材料,高温电子和先进的苛刻环境电子包装的组合的压力/温度多传感器的开发。压力/温度多传感器能够预先监测推进,能量产生和工业系统。多传感器方法将减少控制系统重量和布线复杂性,设计时间和成本。多传感器控制策略根据单传感器策略做好,以便有效地提高精度和容错能力。得到的传感器和包装可以以低成本制造并在腐蚀性环境中运行,同时测量高达2552°F(1400°C)的温度,同时压力测量高达1000 psi。高温,高压压缩机系统和自适应发动机技术的组合能够高推力和效率。多传感器方法可能为传感器电平融合提供机会,其中多个传感器测量相关参数。原位部署这些传感器可实现高级压缩机和燃烧器控制方案,用于预后和主动控制,便于环保航空。目前的努力包括:将传感器技术与高温电子产品组合以生产用于分布式发动机控制的“智能”传感器,电容传感器元件具有增加的动态带宽和高级传感器封装技术。智能发动机的关键技术是需要智能传感器的主动控制,高级诊断和预后探测器。感知当前发动机操作条件和状态以及与自适应控制反应的能力需要强大的传感器。必须在相关环境中测试这些传感器。本文将报告一些测试。通过NASA车辆集成推进研究(VIPR)和空军小型部件和发动机结构评估研究(S-CAESAR)发动机演示程序,计划额外的发动机测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号