首页> 外文会议>International Instrumentation Symposium >High Temperature, Self-Powered Autonomous Wireless Sensor for Bearing Monitoring System for Turbine Engine PHM
【24h】

High Temperature, Self-Powered Autonomous Wireless Sensor for Bearing Monitoring System for Turbine Engine PHM

机译:用于涡轮发动机PHM的轴承监测系统的高温,自动自动无线传感器

获取原文

摘要

This paper reports the development and implementation of an autonomous, wireless bearing monitoring sensor system (ABMS) powered from a thin film thermal electric generator (TEG) as an energy harvesting device. Bearing vibration data can be used with vibration predictive health maintenance (PHM) algorithms to determine the occurrence of a bearing fault by comparing the bearing vibration signature vs. baseline vibration performance. PHM systems offer many cost and safety benefits. The most obvious cost savings benefit comes from condition based maintenance which allows operators to forego preventative schedule based maintenance and only repair, replace, or refurbish components when necessary. This leads to longer component lifetimes, reduced downtime, and the ability to schedule necessary maintenance well in advance. However, a PHM system can easily negate the supposed benefits if it requires constant maintenance. Often, the data required by the PHM algorithms necessitates installation of sensor nodes in difficult-to-service areas, and constantly accessing these areas to replace batteries becomes a burden. Drop-in, low maintenance PHM systems require energy harvesting technology in order to free the end user from system interruption just to replace a battery on a sensor node. Multiple energy harvesting methods are available and being developed, and choosing the correct technology requires intimate knowledge of the target operating environment, sensor node voltage and power requirements, and data rates necessary for the PHM algorithms. Energy harvesting technologies can take advantage of system vibration, temperature gradients, access to sunlight, angular momentum, or ambient electromagnetic noise. Each PHM application requires an individual design to take advantage of environmental parameters. The situation becomes more complex if the component of interest in located in a high temperature environment (>200 °C). This is problematic because components located in high temperature environments are more likely to fail due to thermal cycling and fatigue; however, these are many of the components that would benefit the most from PHM. While environmental energy may be available to harvest, available energy harvesting technology for this temperature range is lacking.
机译:本文报告了从薄膜热电发电机(TEG)作为能量收集装置的自主无线轴承监测传感器系统(ABMS)的开发和实施。轴承振动数据可与振动预测健康维护(PHM)算法一起使用,以通过比较轴承振动签名与基线振动性能来确定轴承故障的发生。 PHM系统提供多种成本和安全效益。最明显的成本储蓄效益来自基于条件的维护,使操作员能够在必要时提供基于预防性的维护和仅修理,更换或翻新组件。这导致更长的组件寿命,减少停机时间以及提前提前安排必要的维护的能力。然而,如果需要持续维护,PHM系统可以轻松否定假定的好处。通常,PHM算法所需的数据需要在困难到服务区域中安装传感器节点,并且不断访问这些区域以更换电池成为负担。掉入,低维护PHM系统需要能量收集技术,以便释放最终用户从系统中断,只是为了更换传感器节点上的电池。有多种能量收集方法可用并开发,选择正确的技术需要彻底了解目标操作环境,传感器节点电压和功率要求,以及PHM算法所需的数据速率。能量收集技术可以利用系统振动,温度梯度,进入阳光,角动量或环境电磁噪声。每个PHM应用需要个人设计以利用环境参数。如果位于高温环境(> 200°C)中的兴趣分量,情况变得更加复杂。这是有问题的,因为由于热循环和疲劳,位于高温环境中的部件更可能失效;然而,这些是许多将从PHM中受益的组件。虽然环境能量可用于收获,但缺乏可用于该温度范围的可用能量收集技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号