首页> 外文会议>SPIE Astronomical Telescopes + Instrumentation Conference >Predicting the particle-induced background for future X-ray astronomy missions: the importance of experimental validation for GEANT4 simulations
【24h】

Predicting the particle-induced background for future X-ray astronomy missions: the importance of experimental validation for GEANT4 simulations

机译:预测未来X射线天文任务的粒子诱导的背景:GEANT4模拟实验验证的重要性

获取原文

摘要

Particle-induced background, or "instrument background", produced from the interaction of background photons and charged particles with a detector, either as primaries or through the generation of secondary photons or particles, is one of the major sources of background for the focal plane sensors in X-ray astronomy missions. In previous studies for the European Space Agency (ESA) X-ray Multi Mirror (XMM-Newton) mission, the dominant source of background was found to be caused by the knock-on electrons generated as high-energy protons pass through the shielding materials surrounding the detector. From XMM-Newton, the contribution of Compton and other photon-generated background was small in comparison to the knock-on electron component. However, for the Wide Field Imager (WFI) on board the ESA Advanced Telescope for High-ENergy Astrophysics (ATHENA) mission Athena, which houses much thicker silicon in the depleted p-channel field effect transistor (DEPFET) active pixel sensors of the focal plane when compared to the Charge Coupled Devices (CCDs) used in the XMM-Newton EPIC MOS cameras, this photon component may no longer be expected to have such a minimal impact and therefore both the photon and proton-induced components must be considered in more detail. In order to minimise the background, studies have been conducted on the use of a graded-Z shield in addition to an aluminium proton shield (employed for radiation damage minimization). For thin detectors, a low-Z component alone may suffice, reducing the fluorescence components of the background. However, with thicker detectors a high-Z component may give added benefit through the combination of the high-Z component to reduce the photon-induced effects and a low-Z component to reduce the fluorescence components from the shielding's inner-surfaces, thus creating an "aluminium sandwich". In all cases, careful optimization of the shielding configuration is required to balance each component of background specific to the design of the instrument involved. The optimization of any shielding relies heavily upon a validated and verified simulation toolkit. Here we present the latest progress on our ongoing validation and verification studies of the GEANT4 simulations used for such an optimization process through a series of experimental test campaigns.
机译:粒子引起的背景或“仪器背景”,由背景光子的相互作用和具有检测器的带电粒子的相互作用产生,无论是初学者还是通过产生二次光子或粒子,都是焦平面的主要背景之一X射线天文学任务中的传感器。在以前的欧洲航天局(ESA)X射线多镜(XMM-Newton)任务的研究中,发现主要的背景技术来源是由于高能质子通过屏蔽材料产生的敲击电子引起的围绕探测器。来自XMM-Newton,与敲击电子元件相比,康普顿和其他光子产生的背景的贡献很小。但是,对于船上的ESA高级望远镜(ATHENA)Mission Athena的ESA高级望远镜(WFI),其在焦点的耗尽的P沟道场效应晶体管(DEPFET)有源像素传感器中,可以在焦点中覆盖得多的硅片与XMM-Newton Epic MOS相机中使用的电荷耦合器件(CCD)相比,该光子组件可能不再预期具有如此最小的影响,因此必须更加考虑光子和质子诱导的部件。细节。为了最小化背景,除了铝质子屏蔽之外,还在使用梯度Z护罩上进行研究(用于辐射损坏最小化)。对于薄探测器,单独的低Z组分可以足够,降低了背景的荧光分量。然而,通过较厚的检测器,高Z组分可以通过高Z组分的组合给予添加益处,以减少光子诱导的效果和低Z组分,以减少来自屏蔽的内表面的荧光成分,从而产生一个“铝夹层”。在所有情况下,需要仔细优化屏蔽配置,以平衡特定于所涉及的仪器设计的每个组件。任何屏蔽的优化都依赖于验证和验证的仿真工具包。在这里,我们通过一系列实验测试活动,提出了对用于此类优化过程的持续验证和验证研究的最新进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号