首页> 外文会议>Residuals and biosolids conference >Primary sludge to valuable chemicals, hydrogen peroxide (H_2O_2), in microbial electrochemical cells - H_2O_2 production and in-situ sludge treatment
【24h】

Primary sludge to valuable chemicals, hydrogen peroxide (H_2O_2), in microbial electrochemical cells - H_2O_2 production and in-situ sludge treatment

机译:初级污泥对有价值的化学品,过氧化氢(H_2O_2),微生物电化学电池 - H_2O_2生产和原位污泥处理

获取原文

摘要

Organic-rich wastes such as wastewater sludges have been used for production of methane (CH4) in anaerobic digestion (AD). As an alternative anaerobic technology, microbial electrochemical cells (MxCs) have been studied for electron recovery from waste organics while detouring electron flow to electrode (anode) instead of CH4. Thus, MxC represents a promising, anaerobic biotechnology having the same advantages of AD including energy source production, low energy usage, and small excess cell production, which is associated in disposal cost. On top of that, the recovered electrons in the anode can be utilized to produce electrical power, hydrogen, or hydrogen peroxide, etc. at the cathode. Hydrogen peroxide (H_2O_2) production in MxCs, called microbial hydrogen peroxide producing cell (MPPC), is attractive because of the variety of uses for this chemical, especially for on-site wastewater-treatment such as tertiary treatment, pre- or post-treatment of sludge, or cleaning membranes. In this study, we conducted two experiments with different designs of MPPCs fed with primary sludge (PS) as a sole feeding substrate: dual-chambered and single-chambered MPPCs. First, in the dual-chambered MPPC (dMPPC), we aimed to produce H_2O_2 in the cathode chamber when feeding PS in the anode chamber. PS-COD and -VSS removals were 49 and 43%, respectively, and maximum current density was ~1 A/m~2. A maximum H_2O_2 concentration of -230 mg/L was achieved in 6 hours of batch cathode operation. This is the first demonstration of H_2O_2 production using PS in the well-designed MPPC and indicated that the energy requirement for H_2O_2 production was low (-0.87 kWh per kg H_2O_2). This energy requirement compared with that of previous studies using real wastewaters (up to 78 kWh per kg H_2O_2). However, we observed the H_2O_2 in the cathode chamber operated in batch mode gradually decayed with time due to the diffusion of H_2O_2-scavenging carbonate ions from the anode. To avoid H_2O_2 decomposition, several future studies should follow: ⅰ) continuous cathode operation, ⅱ) addition of H_2O_2 stabilizer, and ⅲ) direct application of H_2O_2 for wastewater disinfection. Next, in the single-chambered MPPC (sMPPC), we employed direct usage of H_2O_2 for sludge treatment by removing membranes and cathode chambers used in the dMPPC so that H_2O_2 can move into the anode chamber for enhancing sludge stabilization. We tested two different types of filters as separators between anodes and cathodes: glass fiber and polyester stitchbond fabric. In the sMPPC test, we increased PS loading, ~5 g COD/L/day, which was over 5-fold higher than that of dMPPC. Even in the higher loading condition, we achieved better COD and VSS removals, 52 and 49%, respectively, as well as higher maximum current density, -3.5 A/m~2. Especially with the polyester stitchbond fabric filter, which has larger pore size than glass fiber and thus better transport of H_2O_2, we achieved the important requirements for land application of biosolids: Class B biosolids disinfection and the vector attraction reduction (VAR) (< 2 million most probable number (MPN) per gram biosolids, dry-weight basis and > 38% volatile solids reduction); our results were 52% VSS removal and 1.2 × 10~5 MPN per g dry-weight PS. Also, with open circuit test (no current flowing), we differentiated the H_2O_2 contribution to PS organic removal by 13% on top of the electron recovery by anode respiration. Based on the electrochemical analysis with linear sweep voltammetry, ~0.5 g H_2O_2/L/day can be produced in the sMPPC with no energy input (energy neutral) and the assumption of 100% cathodic efficiency. As a proof-of-concept, we demonstrate H_2O_2 production in dMPPC fed with real wastewater sludge. More importantly, the results of sMPPC were very promising with ⅰ) the stable operation with high PS loading rates (5 gCOD/L/day and 2.7 gVSS/L/day), ⅱ) the achievement of a biosolids quality having Class B disinfection and the
机译:富含废水污泥的有机废物已用于厌氧消化(AD)中的甲烷(CH4)。作为一种替代的厌氧技术,已经研究了微生物电化学电池(MXC),用于从废有机物中回收电子回收,同时促使电子流到电极(阳极)代替CH4。因此,MXC代表了具有相同的ANAerobic生物技术,具有相同的广告优点,包括能源生产,低能量使用和小的多余细胞生产,这与处置成本相关。首先,阳极中的回收的电子可以用于在阴极处产生电力,氢或过氧化氢等。 MXC中的过氧化氢(H_2O_2)在MXC中产生,称为微生物过氧化氢生产细胞(MPPC),由于该化学品的各种用途是具有吸引力的,特别是对于现场废水处理,例如叔治疗,预治疗或后处理污泥或清洁膜。在这项研究中,我们用初级污泥(PS)作为鞋底送料基材的不同设计进行了两种实验:双腔和单腔MPPC。首先,在双腔MPPC(DMPPC)中,我们旨在在阳极室中供给PS时在阴极室中产生H_2O_2。 PS-COD和-VSS除去分别为49和43%,最大电流密度为约1A / m〜2。在6小时的批量阴极操作中实现了-230mg / L的最大H_2O_2浓度。这是使用PS在精心设计的MPPC中使用PS的H_2O_2生产的第一次演示,并表明H_2O_2生产的能量要求低(每千克每千克H_2O_2)。这种能量要求与使用真正的废水器的先前研究相比(每千克每kg h_2o_2高达78千瓦时)。然而,我们观察到以批量模式操作的阴极室中的H_2O_2随着时间的推移而逐渐衰减,由于H_2O_2-清除碳酸酯离子与阳极的扩散。为避免H_2O_2分解,几项未来的研究应遵循:Ⅰ)连续阴极操作,Ⅱ)添加H_2O_2稳定剂,Ⅲ)直接施加H_2O_2进行废水消毒。接下来,在单腔MPPC(SMPPC)中,我们采用通过去除DMPPC中使用的膜和阴极室而直接使用H_2O_2以进行污泥处理,使得H_2O_2可以进入阳极室以增强污泥稳定。我们在阳极和阴极之间的分离器测试了两种不同类型的过滤器:玻璃纤维和聚酯缝合面料。在SMPPC测试中,我们增加PS加载,〜5g COD / L /天,比DMPPC高出5倍。即使在较高的负载条件下,我们也分别实现了更好的COD和VSS去除,52和49%,以及更高的最大电流密度-3.5A / m〜2。特别是与孔径大的聚酯缝合织物过滤器比玻璃纤维更大,从而更好地运输H_2O_2,我们实现了生物溶解的土地应用的重要要求:B类生物溶解和矢量吸引力减少(VAR)(<200万每根克生物溶胶最可能的数量(MPN),干重基础和> 38%挥发性固体还原);我们的结果为52%VSS去除,每G干重PS为1.2×10〜5 MPN。此外,通过开放式电路测试(无电流流动),我们将H_2O_2的贡献与阳极呼吸的电子回收的顶部分化为PS有机去除13%。基于线性扫描伏安法的电化学分析,可以在SMPPC中产生〜0.5g H_2O_2 / L /天,没有能量输入(能量中性)和100%阴极效率的假设。作为概念验证,我们展示了用真正的废水污泥喂养的DMPPC中的H_2O_2。更重要的是,SMPPC的结果具有非常有前景的Ⅰ)稳定运行高PS加载率(5 GCOD / L /天和2.7 GVSS / L /天),Ⅱ)实现具有B类消毒类生物质量的生物溶胶质量这

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号