首页> 外文会议>International Conference on Energy Conservation and Efficiency >Comparative Numerical Investigation on Effect of Characteristic Parameters on Thermal Energy Enhancement by Alumina-Water and Cupric-Oxide-Water Nanofluids
【24h】

Comparative Numerical Investigation on Effect of Characteristic Parameters on Thermal Energy Enhancement by Alumina-Water and Cupric-Oxide-Water Nanofluids

机译:特征参数对氧化铝 - 水和氧化铜 - 氧化物 - 水纳米流体热能增强效果的比较数值研究

获取原文

摘要

Heat transfer forms the basis of conversion of one form of energy to another. Increasing heat transfer area by using conventional methods of geometry design can increase the output temperature but this leads to a bulky and costly thermal system. Passive techniques can decrease the cost. The research presented revolves around enhancement of heat transfer using nanofluids. Nanofluids are colloidal suspensions of nanoparticles in a base fluid (thermal fluids) such as water with excellent thermal characteristics. They enhance heat transfer by increasing the convective heat transfer and thermal conductivity of nanofluid as compared to base fluid by increasing heat transfer area. An analysis of hydrodynamically and thermally developing or simultaneously developing laminar forced convection of nanofluids in circular pipes subjected to a constant wall heat flux boundary condition has been performed by numerical method. The numerical analysis was conducted using parametric three dimensional (3D) computational fluid dynamics (CFD) simulation code ANSYS CFX. Alumina (Al_2O_3) and copper oxide (CuO) nanoparticles were employed in water as base fluid in a liquid single-phase constant thermophysical properties model. The effect of design factors of concentration, diameter, Reynold (Re) number, and type of nanofluid on heat transfer coefficient (h), Nusselt (Nu) number, and pressure drop (ΔP) is investigated for different axial locations. Results reveal that increasing particle concentration from 1% to 5% increases the heat transfer coefficient for Al_2O_3-water by more than 5% similar to that by Re number. CuO shows little heat transfer enhancement due to high density and low thermal conductivity. Velocity increases along the length of the pipe. Moreover, the results were validated with empirical/theoretical and experimental correlations and agreed with an error less than 5%.
机译:传热形成一种能量转化为另一种能量的基础。通过使用传统的几何设计方法增加传热面积可以增加输出温度,但这导致笨重和昂贵的热系统。被动技术可以降低成本。使用纳米流体呈现的研究围绕着增强了热传递的增强。纳米流体是纳米颗粒的碱液悬浮液(例如热流体)中的纳米颗粒,例如具有优异的热特性的水。通过增加传热面积,通过增加碱流体的对流传热和导热率来提高热传递。通过数值方法进行了对经受恒定壁热通量边界条件的圆形管中纳米流体中纳米流体的流体动力学和热显影或同时发育的层状压力对流的分析。使用参数三维(3D)计算流体动力学(CFD)仿真代码ANSYS CFX进行数值分析。氧化铝(Al_2O_3)和氧化铜(CuO)纳米颗粒在水中作为液体单相恒热性能模型中的基础流体中使用。针对不同的轴向位置研究了浓度,直径,雷诺(RE)数和纳米流体类型的浓度,直径,雷诺(RE)数和纳米流体类型和压降(ΔP)的影响。结果表明,从1%〜5%的颗粒浓度的增加将Al_2O_3-水的热传递系数增加超过5%,通过重新编号相似。 CUO由于高密度和低导热率而显示出几乎没有传热增强。速度沿着管道的长度增加。此外,结果以经验/理论和实验相关性验证,并同意误差小于5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号