首页> 外文会议>IEEE Nuclear Science Symposium;Medical Imaging Conference >Simulation Study on the Role of Tissue-Scattered Events in Improving Sensitivity for a Compact Time of Flight Compton Positron Emission Tomograph
【24h】

Simulation Study on the Role of Tissue-Scattered Events in Improving Sensitivity for a Compact Time of Flight Compton Positron Emission Tomograph

机译:组织散射事件在提高飞行康普顿正电子发射断层扫描仪的灵敏度敏感度的仿真研究

获取原文

摘要

In positron emission tomography improving time, energy and spatial detector resolutions and using Compton kinematics introduces the possibility to reconstruct a radioactivity distribution image from scatter coincidences, thereby enhancing image quality. The number of single scattered coincidences alone is in the same order of magnitude as true coincidences. In this work, a compact Compton camera module based on monolithic scintillation material is investigated as a detector ring module. The detector interactions are simulated with Monte Carlo package GATE. The scattering angle inside the tissue is derived from the energy of the scattered photon, which results in a set of possible scattering trajectories or broken line of response. The Compton kinematics collimation reduces the number of solutions. Additionally, the time of flight information helps localize the position of the annihilation. One of the questions of this investigation is related to how the energy, spatial and temporal resolutions help confine the possible annihilation volume. A comparison of currently technically feasible detector resolutions (under laboratory conditions) demonstrates the influence on this annihilation volume and shows that energy and coincidence time resolution have a significant impact. An enhancement of the latter from 400 ps to 100 ps leads to a smaller annihilation volume of around 50%, while a change of the energy resolution in the absorber layer from 12% to 4.5% results in a reduction of 60%. The inclusion of single tissue-scattered data has the potential to increase the sensitivity of a scanner by a factor of 2 to 3 times. The concept can be further optimized and extended for multiple scatter coincidences and subsequently validated by a reconstruction algorithm.
机译:在正电子发射断层扫描中,改善时间,能量和空间探测器分辨率和使用康普顿运动学的分辨率引入了从散射倍转重建放射性分布图像的可能性,从而提高了图像质量。单独的单一散射巧合的数量与真正的巧合相同。在这项工作中,研究了一种基于单片闪烁材料的紧凑型康普顿相机模块作为检测器环模块。用蒙特卡罗包栅模拟探测器相互作用。组织内部的散射角来自散射光子的能量,这导致一组可能的散射轨迹或破碎的响应线。康普顿运动学准直减少了解决方案的数量。此外,航班信息的时间有助于本地化湮灭的位置。该调查的一个问题与能量,空间和时间分辨率如何有助于限制可能的湮灭量。目前技术上可行的探测器分辨率(在实验室条件下)的比较表明对该湮灭量的影响,并表明能量和巧合时间分辨率具有显着影响。后者从400pe到100 ps的增强导致较小的湮灭体积约为50%,而吸收层中的能量分辨率的变化从12%到4.5%导致减少60%。包含单个组织散射的数据具有可能将扫描仪的灵敏度提高2至3次。该概念可以进一步优化和扩展多个散射键,随后通过重建算法验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号