首页> 外文会议>Conference on Photonics North >Towards quantum dot and FRET-based optical DNA biosensor technology: surface chemistry and photoluminescence of CdSe/ZnS and Si quantum dots
【24h】

Towards quantum dot and FRET-based optical DNA biosensor technology: surface chemistry and photoluminescence of CdSe/ZnS and Si quantum dots

机译:朝向量子点和基于FRET的光学DNA生物传感器技术:表面化学和CDSE / ZnS和Si量子点的光致发光

获取原文

摘要

Quantum dots (QDs) are nanostructures that are highly attractive to optical biosensing. We have developed a nucleic acid biosensing strategy based on the use of quantum dots as energy donors in FRET. One of the challenges in such an approach is avoiding the non-specific adsorption of oligonucleotides. In this report, we describe our efforts to develop poly(ethylene glycol) (PEG)-based hydrophilic surface chemistry and hexanethiol based hydrophobic surface chemistry to alleviate non-specific adsorption. With respect to the former, it was found that the PEG surface chemistry strongly quenched the band-edge luminescence of CdSe/ZnS QDs and yielded significant band-gap luminescence. Furthermore, the PEG chemistry proved ineffective in preventing adsorption. With respect to hexanethiol capped CdSe/ZnS QDs, it was found that good QD luminescence was retained in organic solvent but was quenched in aqueous solution. The use of hydrophobic hexanethiol QDs in aqueous solution required the immobilization of QDs. To achieve this, we used thiol modified biotin and avidin coated fused silica optical fibers. Despite the quenching of the QDs, minimal adsorption was observed suggesting the methodology has good potential. In addition, we describe the development of a one-pot method for both the synthesis and capping of silicon QDs. Our approach also allows versatile post-synthetic modification of the silicon QD capping to produce a variety of functional groups. Silicon QDs are of interest in biosensing due to their biocompatibility and much lower toxicity compared to II-VI semiconductors.
机译:量子点(QDS)是对光学生物沉积的高度吸引力的纳米结构。我们开发了一种基于使用量子点作为尺寸的能量供体的核酸生物传感策略。这种方法的挑战之一是避免寡核苷酸的非特异性吸附。在本报告中,我们描述了开发聚(乙二醇)(PEG)的亲水性表面化学和六乙二醇基疏水表面化学的努力,以减轻非特异性的吸附。关于前者,发现PEG表面化学强烈地淬火CDSE / ZnS QD的带边发光并产生显着的带间隙发光。此外,PEG化学证明在预防吸附方面是无效的。关于六硫醇封端的Cdse / ZnS QD,发现良好的QD发光在有机溶剂中保留,但在水溶液中淬灭。在水溶液中使用疏水性六烷醇QD需要固定QDS。为此,我们使用硫醇改性生物素和抗生物素蛋白涂覆的熔融二氧化硅光纤。尽管QD淬火,但观察到最小的吸附表明该方法具有良好的潜力。此外,我们描述了硅QDS的合成和封盖的单壶方法的发展。我们的方法还允许多种合成的硅QD封盖的合成后修饰,以产生各种官能团。由于它们的生物相容性和与II-VI半导体相比,硅QDS对生物化的感兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号