首页> 外文会议> >A New Technique to Determine Porosity and Deep Resistivity from Old Gamma Rayand Neutron Count Logs
【24h】

A New Technique to Determine Porosity and Deep Resistivity from Old Gamma Rayand Neutron Count Logs

机译:利用旧伽马射线和中子计数测井确定孔隙度和深电阻率的新技术

获取原文

摘要

Multivariate correlations developed via radial-basis function(RBF) network analysis of a modern suite of logs are used toestimate crossplot density-neutron porosity and pseudo-deepresistivity from 1950’s vintage well logs. Historically,porosity has been estimated with the logarithm of the neutroncount rate standardized with a 2% porosity tight spot and amaximum porosity of ~40% in a shale stringer. Despite afrequently observed visual correlation of the gamma ray trackwith the neutron count rate, the gamma ray log information isnot included in conventional porosity estimates.The visual comparison of the openhole gamma rayand the neutron porosity to the shape of the crossplot porosityfrom a new well, Foster 4, is similar to the pattern seenbetween the old gamma ray and the neutron-count rate logs.The new log data were investigated with various RBFnetworks to correlate the gamma ray and neutron-count ratewith the crossplot porosity. An optimal RBF network wasthen used to estimate the crossplot porosity of the Penrosesand for 22 wells in the Reed Sanderson Unit where onlycased-hole gamma ray and neutron-count rate logs areavailable. An equation converts the modern neutron log to theold style neutron count rate while providing a normalizedinput to the network training. The “goodness” of the RBFnetwork predictions was validated via exclusion testing.A similar procedure was used to estimate a pseudodeepresistivity in old wells. The study indicated that acarefully trained RBF network could identify the highresistivity intervals (shale stringers) with only gamma ray andneutron count rate used as the network inputs. Themethodology presented should prove useful to others facedwith characterizing old fields.
机译:通过径向基函数(RBF)网络分析对一套现代测井仪开发的多元相关性用于估算1950年老式测井仪的交会密度-中子孔隙度和拟深电阻率。从历史上看,孔隙率是用中子计数率的对数来估算的,其中页岩​​纵梁中孔隙率为2%,致密点为最大,最大孔隙率为〜40%。尽管经常观察到伽马射线轨迹与中子计数率的视觉相关性,但常规孔隙度估算中并未包括伽马射线测井信息。裸眼伽马射线和中子孔隙度与新井Foster的交会孔隙度形状的视觉比较图4类似于旧的伽马射线与中子计数率测井之间的模式。使用各种RBF网络研究新的测井数据,以将伽马射线和中子计数率与交叉图孔隙率相关联。然后,使用最佳的RBF网络来估算Reed Sanderson单元中22口井的Penrosesand交会孔隙度,那里只有套管井伽马射线和中子计数率测井。方程式将现代中子对数转换为旧式中子计数率,同时为网络训练提供标准化输入。通过排阻测试验证了RBF网络预测的“优度”。采用了类似的方法来估算老井的拟深电阻率。研究表明,经过精心训练的RBF网络可以仅使用伽马射线和中子计数率作为网络输入来识别高电阻率层段(页岩纵梁)。提出的方法论应该被证明对面临老领域特征的其他人有用。

著录项

  • 来源
    《 》|2000年|p.1-10|共10页
  • 会议地点 Midland TX(US)
  • 作者单位

    New Mexico Petroleum Recovery Research Center;

    Lynx Petroleum Consultants;

    Los Alamos National Laboratory;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号