首页> 外文会议>International Symposium on Stability Control of Rotating Machinery >High-Temperature Turbine Applications Using Open Porous Metallic Foams with Thermal Barrier Coatings and Cooling Hole Arrays
【24h】

High-Temperature Turbine Applications Using Open Porous Metallic Foams with Thermal Barrier Coatings and Cooling Hole Arrays

机译:高温涡轮机应用,采用具有热阻涂层和冷却孔阵列的开放多孔金属泡沫

获取原文

摘要

For further improvement of combined cycle power plants the combustor outlet temperature has to be increased up to 1520°C in combination with a simultaneous reduction of the cooling fluid mass flow. Both improvements can be realized by an effusion cooling of the thermally highly loaded turbine components. A two-dimensional cooling strategy in combustion chambers which allows the outflow of the cooling medium over the complete wall area of the combustion chamber is realized by an open porous metallic foam structure.Open porous and high temperature resistant Ni-base structures (Inconel 625) are developed for the requirements of an effusion cooling. The SlipReactionFoamSintering is used to produce a metallic foam, as the open porous structure. To withstand the high temperatures in the combustor of a gas turbine up to 1520°C, the samples are covered by thermal barrier coatings using thermal spraying, which hermetically seals the open porous structures. Laser radiation is used to open the thermal barrier coating in order to form subsequently a blind hole in the metallic foam establishing vias to a number of pores enabling a cooling mass flow through the blind holes to the surface of the sample. The required depth of the blind hole depends on the thickness of the coatings and the porosity of the metallic foam. The cooling holes are drilled at an inclination angle of up to 45° with a diameter of approximately 0.2 mm and a density of 100 holes per cm~2. Therefore, the laser energy has to be adapted to avoid a structural damage of the metallic foam. Due to the drilling time of less than 0.2s per hole laser percussion drilling is suitable for processing metallic foam based multi layer systems. The drilled blind holes are reproducible concerning depth and diameter, but their geometry depends on the thickness of the thermal barrier coating and the bond coat as well as the porosity of the metallic foam governed by the sintering process. As a final challenge the design of a multi-layer structure based on a graded metallic foam is presented, which influences the performance of the outflow of the cooling medium into the combustion chamber. The general feasibility of the production steps of the multi-layer component made out of the open porous foam and the thermal barrier coating is demonstrated, which combines metallic and ceramic materials with differing structural and thermal properties.
机译:为了进一步改进组合循环发电厂,燃烧器出口温度必须与冷却流体质量流量的同时减少相结合增加至1520℃。通过热负荷的涡轮机部件的积液冷却可以实现这两种改进。燃烧室中的二维冷却策略,允许冷却介质在燃烧室的完整壁面积上流出通过开口多孔金属泡沫结构来实现。多孔和高耐耐温的Ni基结构(Inconel 625)开发用于耗能冷却的要求。滑泡反应杂交用于生产金属泡沫,作为开放多孔结构。为了承受高达1520℃的燃气轮机的燃烧器中的高温,使用热喷涂覆盖样品,该热障涂层覆盖,热喷涂,气密地密封开放的多孔结构。激光辐射用于打开热阻挡涂层,以便在金属泡沫中形成盲孔,建立通孔到多个孔,使得冷却质量通过盲孔到样品的表面。盲孔所需的深度取决于涂层的厚度和金属泡沫的孔隙率。冷却孔以高达45°的倾斜角钻,其直径约为0.2mm,每cm〜2的密度为100孔。因此,必须适于避免金属泡沫的结构损坏。由于每孔小于0.2s的钻孔时间,激光撞击钻孔适用于加工金属泡沫基的多层系统。钻孔的盲孔具有深度和直径可再现,但它们的几何形状取决于热阻挡涂层和粘合涂层的厚度以及被烧结过程所控制的金属泡沫的孔隙率。作为最终挑战,提出了基于渐变金属泡沫的多层结构的设计,其利用冷却介质流出的性能进入燃烧室。通过开口多孔泡沫制成的多层部件的生产步骤和热阻挡涂层的一般可行性进行了说明,其结合了金属和陶瓷材料具有不同的结构和热性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号