首页> 外文会议>Aerospace Conference;IEEE Aerospace Conference >Sensor and Computing Resource Management for a Small Satellite
【24h】

Sensor and Computing Resource Management for a Small Satellite

机译:用于小型卫星的传感器和计算资源管理

获取原文
获取外文期刊封面目录资料

摘要

A small satellite in a low-Earth orbit (e.g., approximately a 300 to 400 km altitude) has an orbital velocity in the range of 8.5 km/s and completes an orbit approximately every 90 minutes. For a satellite with minimal attitude control, this presents a significant challenge in obtaining multiple images of a target region. Presuming an inclination in the range of 50 to 65 degrees, a limited number of opportunities to image a given target or communicate with a given ground station are available, over the course of a 24-hour period. For imaging needs (where solar illumination is required), the number of opportunities is further reduced. Given these short windows of opportunity for imaging, data transfer, and sending commands, scheduling must be optimized. In addition to the high-level scheduling performed for spacecraft operations, payload-level scheduling is also required. The mission requires that images be post-processed to maximize spatial resolution and minimize data transfer (through removing overlapping regions). The payload unit includes GPS and inertial measurement unit (IMU) hardware to aid in image alignment for the aforementioned. The payload scheduler must, thus, split its energy and computing-cycle budgets between determining an imaging sequence (required to capture the highly-overlapping data required for super-resolution and adjacent areas required for mosaicking), processing the imagery (to perform the super-resolution and mosaicking) and preparing the data for transmission (compressing it, etc.). This paper presents an approach for satellite control, scheduling and operations that allows the cameras, GPS and IMU to be used in conjunction to acquire higher-resolution imagery of a target region.
机译:低地轨道(例如,大约300至400公里高度)的小卫星在8.5公里/秒的范围内具有轨道速度,并且每90分钟完成一次轨道。对于具有最小姿态控制的卫星,这在获得目标区域的多个图像时提出了重大挑战。在50至65度的范围内推测在50至65度的范围内,在24小时的时间内,可获得与给定的目标或与给定地站进行通信的有限数量的机会。对于成像需求(需要太阳能照明),机会的数量进一步降低。鉴于这些短窗口的成像,数据传输和发送命令,必须优化调度。除了为航天器操作执行的高级调度之外,还需要有效载荷级调度。任务要求将图像进行后处理以最大化空间分辨率并最小化数据传输(通过去除重叠区域)。有效载荷单元包括GPS和惯性测量单元(IMU)硬件,以帮助上述图像对准。因此,有效载荷调度器必须在确定成像序列之间分离其能量和计算周期预算(所需的是捕获用于拼写所需的超分辨率和相邻区域所需的高度重叠的数据),处理该图像(以执行超级 - Resolution and MosaIking)并准备传输数据(压缩它等)。本文介绍了卫星控制,调度和操作的方法,允许相机,GPS和IMU结合使用以获取目标区域的更高分辨率图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号