首页> 外文会议>Conference on Structural Integrity of Additive Manufactured Parts >Metal Additive Manufacturing Defect Formation and Nondestructive Evaluation Detectability
【24h】

Metal Additive Manufacturing Defect Formation and Nondestructive Evaluation Detectability

机译:金属添加剂制造缺陷形成和非破坏性评估可检测性

获取原文
获取外文期刊封面目录资料

摘要

Depending on input material, process method, process parameters, and postprocessing, the resulting defect state in as-built and finished additive manufactured (AM) parts can be highly variable and complex. To complicate matters further, the terminology used to describe specific defect types can be archaic or user specific and is in need of global harmonization. A common understanding of the root causes of defects and the effect of defects on relevant properties continues to evolve. In powder bed processing, for example, potential defects can be very small, down to the powder particle size. Defects also can occur because of single or multiple causes. Even when there are multiple causes, single defect types can be produced that fail by a single failure mode. Alternatively, a single defect type can have several different failure modes. The objective of this paper is to classify and identify types of technologically important defects that occur in AM parts produced by powder bed fusion (PBF) and directed energy deposition (DED). A breakdown of technologically important defects is presented in three sections: the cause, the defect, and detection by nondestructive evaluation (NDE). The effect-of-defect on relevant end-use properties is addressed whenever possible. For example, the effect of lack-of-fusion flaws on ultimate tensile properties and high cycle fatigue life is discussed, thus demonstrating the need to be able to detect such flaws. Thus, although the causes of the defects occurring in PBF and DED parts can be quite different, the actual defects can have some similarities. In general, reliable detection of defects by NDE does not depend on the process cause, but depends more on the size, geometry, and location (and, potentially, the morphology) of the defect as well as the complexity, density, and surface finish of the part.
机译:根据输入材料,工艺方法,工艺参数和后处理,所产生的制造和成品添加剂(AM)部件的缺陷状态可以是高度变化和复杂的。进一步复杂化问题,用于描述特定缺陷类型的术语可以是古代或用户特定的,并且需要全局协调。对缺陷根本原因的共同理解以及对相关性质的缺陷的影响仍然发展。例如,在粉末床处理中,潜在的缺陷可以非常小,下降到粉末粒径。由于单个或多个原因,也可能发生缺陷。即使存在多种原因,也可以通过单个故障模式产生单一缺陷类型。或者,单个缺陷类型可以具有几种不同的故障模式。本文的目的是分类和识别由粉床融合(PBF)产生的AM部件中的技术重要缺陷类型,以及定向能量沉积(DED)。技术上重要缺陷的分解在三个部分中呈现:非破坏性评估(NDE)的原因,缺陷和检测。尽可能解决相关最终使用属性上的缺陷效果。例如,讨论了融合缺陷对最终拉伸性能和高循环疲劳寿命的效果,因此表明需要能够检测这种缺陷。因此,尽管在PBF和DED部件中发生的缺陷的原因可以是完全不同的,但实际的缺陷可以具有一些相似之处。通常,NDE的可靠检测不依赖于过程原因,而是取决于缺陷的大小,几何形状和位置(以及,可能,形态)以及复杂性,密度和表面光洁度部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号