首页> 外文会议>AIAA propulsin and energy forum;AIAA/IEEE electric aircraft technologies symposium >Designing Fail-Safe Architectures for Aircraft Electrical Power Systems
【24h】

Designing Fail-Safe Architectures for Aircraft Electrical Power Systems

机译:为飞机电力系统设计故障安全架构

获取原文

摘要

More-electric, hybrid-electric, and all-electric aircraft have one important thing in common: they increasingly rely on electrical components and electrical power systems for fulfilling their principal functions. The increased dependency on electrical power has a drastic impact on the nature of the power generation and distribution system within the aircraft. New electrical components, often safety-critical, require completely rethinking of established electrical power system architectures. Manual (re)design, verification, and test of these complex systems becomes costly, cluttered, and often even infeasible. With a new methodology and software tool, we provide the ability to combine different aspects within the early design phases of electrical power systems. Based on a declarative component-based model, a designer can use the tool to automatically generate architectural variants. The component-based models seamlessly integrate with safety and reliability models in the form of component fault trees, which combine the traditional expressiveness of fault tree analysis for failure behavior with some notable advantages. Component fault trees enable the automatic ranking of the generated architectures in terms of safety and reliability attributes. By associating performance models with the original models, the tool also enables verifying complex functional requirements for the ranked architectures, again in a largely automated fashion. We demonstrate the developed methodology on two realistic use cases. In addition, we comment on the ability to apply the same methodology for the design of other systems (e.g., hydraulics, avionics). Indeed, the redesign of the electrical power system will often go hand in hand with rethinking other aircraft systems, because of their mutual interface(s).
机译:更多电动,混合电动和全电机具有共同点一件重要的事情:它们越来越依赖于电气元件和电力系统来满足其主要功能。增加对电力的依赖性对飞机内发电和分配系统的性质的巨大影响。新的电气元件,通常是安全关键的,需要完全重新思考所建立的电力系统架构。这些复杂系统的手动(RE)设计,验证和测试变得昂贵,凌乱,并且通常是不可行的。通过新的方法和软件工具,我们提供了将不同方面组合在电力系统的早期设计阶段内的不同方面。基于基于陈述组件的模型,设计者可以使用该工具自动生成架构变体。基于组件的模型与组件故障树的形式无缝集成,其结合了故障树分析的传统表达性,以实现故障行为的一些显着优势。组件故障树在安全性和可靠性属性方面启用生成的架构的自动排序。通过将性能模型与原始模型相关联,该工具还可以以极大的自动化方式再次验证排名架构的复杂功能要求。我们展示了两个现实用例的发达方法。此外,我们评论了应用于其他系统的设计相同方法的能力(例如,液压,航空电子设备)。实际上,由于其相互界面,电力系统的重新设计通常会与重新思考其他飞机系统一起携手。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号