首页> 外文会议>Geothermal Resources Council Annual Meeting Expo >Uncertainty Analysis of Subsurface Temperature Estimates in the Snake River Plain, Idaho
【24h】

Uncertainty Analysis of Subsurface Temperature Estimates in the Snake River Plain, Idaho

机译:蛇河平原地下温度估计的不确定性分析,爱达荷

获取原文

摘要

Uncertainty of Snake River Plain (SRP) subsurface temperatures related to heat flow and a radiogenic heat production model is assessed. Heat flow data vary in abundance, spatial distribution, depth distribution, and quality, which make assessing the subsurface thermal regime difficult. We examined data attributes including quality, depth, location, fault proximity, and quantified heat flow interpolation variability. Results show initial data processing and selection of regionally representative data is most important for reducing interpolation uncertainty. Data removal using a 2.5 km buffer around faults is appropriate to inhibit potential advective heat flux while a 5 km buffer is too much, such that it produces random changes in the heat flow grid. The fault buffers change mapped heat flow by less than 20 percent in most areas of the SRP. Additional temperature-at-depth calculation uncertainty is associated with the radiogenic heat production model, which follows the heat flow - radiogenic heat production (Q-A) relationship. Model sensitivity to the radiogenic heat production model is tested by varying heat production layer thickness from 5 to 10 km and examining temperature change at 4 km. Temperatures vary by 10 percent (up to 27 °C), while most temperature is less than 5 percent different. Examination of heat flow, upper crustal thickness, and whole rock geochemistry revealed the Q-A relationship may be an oversimplification of the SRP thermal regime. Radiogenic heat production is approximately 12 to 40 mW/m~2 for this region. Mantle heat flux is set at 60 mW/m~2, which means measured heat flow above 100 mW/m~2 is unaccounted for in the Q-A relationship and must derive from an additional heat source. This anomalous heat flux may be heat refraction, advection, additional mantle heat flux, or a combination. Many data sites along the SRP margins and in the Eastern SRP contain anomalous heat flow, whereas the Western SRP is generally lower than the 100 mW/m~2 cutoff.
机译:评估蛇河平原的不确定性(SRP)与热流相关的地下温度和放射性热生产模型。热流数据在丰富,空间分布,深度分布和质量中变化,这使得评估难以评估地下热状态。我们检查了数据属性,包括质量,深度,位置,故障接近度和量化的热流插补变化。结果显示初始数据处理和区域代表数据的选择对于减少插值不确定性最重要。使用2.5km缓冲器的数据拆除围绕故障抑制潜在的平流热通量,而5km缓冲液太多,使得它在热流网格中产生随机变化。故障缓冲区在SRP的大多数区域中将映射的热量更改小于20%。额外的温度 - 深度计算不确定度与辐射热生产模型相关,其遵循热流 - 辐射热产生(Q-A)关系。通过不同5至10km的热量生产层厚度测试对辐射性发热模型的模型敏感性,并在4公里处检查温度变化。温度变化10%(最多27°C),而大多数温度小于5%不同。热流检测,上层地壳厚度和整个岩石地球化学揭示了Q-A关系可能是SRP热调节的过度简化。该区域的辐射性热量产生约为12至40mW / m〜2。 Mantle热通量设定为60mW / m〜2,这意味着在Q-a关系中未占据100mW / m〜2以上的测量热流,并且必须从附加的热源得出。这种异常的热通量可以是热折射,平流,额外的搭腔热通量或组合。沿SRP边距和东部SRP的许多数据网站含有异常的热流,而西方SRP通常低于100 MW / M〜2截止值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号