首页> 外文会议>Annual Meeting of the Institute of Nuclear Materials Management >Bayesian Bottom-up Uncertainty Quantification in Neutron Multiplicity Measurements: Providing Uncertainty Distributions and Correlations in all the Assay-Item Parameters
【24h】

Bayesian Bottom-up Uncertainty Quantification in Neutron Multiplicity Measurements: Providing Uncertainty Distributions and Correlations in all the Assay-Item Parameters

机译:中子多重性测量中的贝叶斯自下而上不确定度量化:提供所有分析项目参数中的不确定度分布和相关性

获取原文
获取外文期刊封面目录资料

摘要

Uncertainty quantification (UQ) for safeguards applications can be approached from physical first principles ("bottom-up") or approached empirically by comparing measurements from different methods and/or laboratories ("top-down"). The two approaches can lead to different estimates of uncertainty, often with the bottom-up uncertainty estimate being smaller than the top-down uncertainty estimate; such a gap between the estimates is the so-called "dark uncertainty" problem. One component of dark uncertainty is often item-specific biases that arise due to item-specific departures from calibration or modeling assumptions. In nondestructive assay of special nuclear material, inspectors bring instruments into the facility where standard modeling and/or calibration assumptions can be violated to varying degrees. More realistic models that allow for more physical effects can expose some of the dark uncertainty. In cases where the more realistic model does not lead to a tractable likelihood, approximate Bayesian computation (ABC) is an inference option. ABC can be used with the more realistic forward model, which outputs predicted observables (e.g. neutron counts) for any set of specified input parameters, such as item mass. This paper reviews ABC and illustrates how ABC can be applied in a neutron multiplicity counting case study in which some test items exhibit item-specific biases. As a diagnostic, when an ABC-based interval for the true measurement error relative standard deviation (RSD) is constructed to contain approximately 95% of the true values, one can check whether the actual coverage is close to 95%. The performance of ABC analysis is discussed in the framework of non-destructive assay in nuclear safeguards to illustrate potential advantages in ABC compared to current bottom-up approaches.
机译:保障措施应用的不确定度量化(UQ)可从物理第一原则(“自下而上”)或通过比较不同方法和/或实验室的测量值(“自上而下”)以经验方式进行。这两种方法可能导致对不确定性的不同估计,通常自下而上的不确定性估计小于自上而下的不确定性估计;这种估计之间的差距就是所谓的“黑暗不确定性”问题。暗不确定度的一个组成部分通常是由于特定项目偏离校准或建模假设而产生的特定项目偏差。在特殊核材料的无损检测中,检查员将仪器带入设施,在那里,标准建模和/或校准假设可能在不同程度上被违反。允许更多物理效果的更现实的模型可能会暴露一些黑暗的不确定性。在更现实的模型不会导致可处理的可能性的情况下,近似贝叶斯计算(ABC)是一种推理选项。ABC可用于更现实的正向模型,该模型输出任何一组指定输入参数的预测观测值(例如中子计数),如物品质量。本文回顾了作业成本法,并说明了作业成本法如何应用于中子多重性计数案例研究,其中一些测试项目表现出项目特定的偏差。作为诊断,当基于ABC的真实测量误差相对标准偏差(RSD)区间被构造为包含大约95%的真实值时,可以检查实际覆盖率是否接近95%。在核保障的无损检测框架内讨论了ABC分析的性能,以说明ABC与当前自下而上方法相比的潜在优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号