首页> 外文会议>International Confederation for Thermal Analysis and Calorimetry Congress >Thermal stability, dynamics of dipoles and elastic anelastic relaxations accompanying the relaxor dielectric behaviour of tetragonal tungsten bronze oxides: from modelling to the development of novel ferroelectrics and further design of multiferroics
【24h】

Thermal stability, dynamics of dipoles and elastic anelastic relaxations accompanying the relaxor dielectric behaviour of tetragonal tungsten bronze oxides: from modelling to the development of novel ferroelectrics and further design of multiferroics

机译:热稳定性,偶极子和弹性松弛动力学伴随着四方钨青铜氧化物的松弛介质行为:从建模到新型铁电解的开发和多法学的进一步设计

获取原文

摘要

Polar dielectrics, particularly ferroelectrics (FE), are used in a wide range of electronic devices including capacitors, electro-optic switches, non-volatile memory chips and a number of piezoelectric transducers and sensors. The materials in use today are often Pb-containing e.g. Pb(Zr,Ti)O_3 (PZT) or have limited operating temperatures (e.g. BaTiO_3, TC = 130 °C) and so new materials are required for future development. The recent renaissance in the search for novel polar dielectrics and also multiferroics and magnetoelectrics [1,2] has largely focussed on perovskite materials; we have directed our attention to the related tetragonal tungsten bronze (TTB) structure (A1)_2(A2)_4C_4(B1)_2(B2)_8O_(30), which offers similar compositional flexibility [3]. TTBs comprise non-equivalent B06 corner sharing octahedra creating three distinct channels which can be occupied by cations: Al (15 coordinated), A2 (12 coordinated) and C (9 coordinated). This gives an extra degree of freedom to the flexibility of the structure, enhancing the separation of magnetic and ferroelectric ordering to distinct sublattices and makes possible various compositional substitutions. Of particular interest are niobium based TTBs due to their enhanced ferroelectric properties over other analogues such as tantalum or tungsten. In TTB oxides, large cations such as Ba~(2+), Sr~(2+), Ca~(2+), La~(3+), Nd~(3+), Bi~(3+) occupy the larger A-sites, while smaller cations of transitional metals such as Fe~(3+), Ga~(3+), Sc~(3+), In~(3+), Ti~(4+) prefer the B-sites. Despite the extensive past and recent work on TTBs our understanding of how to manipulate this structure is poor compared to other systems. A combination of dielectric spectroscopy (DS) and powder neutron diffraction (PND) as a function of temperature was used as to probe the thermal stability and dipole dynamics in a family of tetragonal tungsten bronze (TTB) relaxor dielectrics with the nominal formula Ba_(6-x-y)Sr_xCa_yM ~(3+)Nb_9O_(30) (where M~(3+) = Ga~(3+), Sc~(3+), In~(3+)). Electrical measurements indicate frequency dependence of both permittivity and dielectric loss characteristic of relaxor behaviour in all compositions. The dynamics of the dipole response has been investigated via Vogel-Fulcher [4-6] and Universal Dielectric Response (UDR) [7,8] analyses of dielectric data and correlated with crystallographic studies. For B-site substitutions the dipole freezing temperature, as determined by dielectric spectroscopy, increased with increasing M cation size [9]; dipole freezing was directly correlated to the structural anisotropy (maximal crystallographic strain) [3]. For A-site substitutions the thermal stability of dipoles is determined by local strain gradients which can be quantified by the statistical cation size variance [10]. All the materials studied are relaxor dielectrics and analysis of the frequency response indicates that the freezing of the dipolar response in these materials is glass-like rather than one of nucleation and growth [11,12]. The ferroic properties of interest are coupled with strain, which will be important in the context of stability, switching dynamics and thin film properties. Coupling of strain with the ferroelectric order parameter give rise to changes in elastic properties and these have been investigated for a ceramic sample of Ba_6GaNb_9O_(30) (BGNO) by resonant ultrasound spectroscopy (RUS). Room temperature values of the shear and bulk moduli for BGNO are rather higher than for TTB's with related composition which are orthorhombic at room temperature, consistent with suppression of the ferroelectric transition. Instead, a broad, rounded minimum in the shear modulus measured at ~1 MHz is accompanied by a broad rounded maximum in acoustic loss near 115 K, and signifies relaxor freezing behaviour. Elastic softening with falling temperature from room temperature, ahead of the freezing interval, is attributed to the development of dynamical polar nanoregions (PNRs),
机译:极性电介质,强电介质尤其(FE),在宽范围的电子装置,包括电容器,电光开关,非易失性存储器芯片和多个压电换能器和传感器中的被使用。目前使用的材料通常是含Pb的例如铅(锆,钛)O_3(PZT)或具有有限的工作温度(例如BaTiO_3,TC = 130℃)等的新材料所需要的未来发展。最近复兴在寻求新颖极性电介质和也multiferroics和magnetoelectrics [1,2]已经在很大程度上集中在钙钛矿材料;我们要我们注意有关四方钨青铜(TTB)结构(A1)_2(A2)_4C_4(B1)_2(B2)_8O_(30),它提供了类似的组成灵活性[3]。 TTBS包括非等效B06角八面体共享创建可以由阳离子占据三个不同的通道:铝(15协调),A2(12协调)和C(9协调)。这得到了结构的灵活性的额外的自由度,提高磁性和铁电有序到不同子晶格的分离和使可能的各种组成的取代。特别感兴趣的是基于铌TTBS由于比其它类似物,如钽或钨其增强的铁电特性。在TTB氧化物,大的阳离子例如Ba〜(2+),锶〜(2+),钙〜(2+),LA〜(3+),钕〜(3+),铋〜(3+)占据较大的A位,而如Fe〜过渡金属的较小的阳离子(3+),嘎〜(3+),钪〜(3+),在〜(3+),钛〜(4+)更喜欢B位。尽管广泛的过去和近期的工作TTBS上其它系统相比,我们对如何处理这种结构的理解很差。介电谱(DS)和粉末中子衍射(PND)作为温度的函数的组合被用作探测在一个家庭与标称式Ba_四方钨青铜(TTB)弛豫电介质的热稳定性和偶极动力学(6 -xy)Sr_xCa_yM〜(3+)Nb_9O_(30)(其中,M〜(3+)=嘎〜(3+),钪〜(3+),在〜(3+))。电测量表明两者的介电常数和在所有组合物中弛豫性的介电损耗特性的频率依赖性。偶极子响应的动力学已经经由沃格尔-富尔彻[4-6]和通用介电响应(UDR)[7,8]电介质数据的分析进行了研究,并与晶体学研究相关。对于B位取代偶极冷冻温度,如通过电介质光谱测定,的增加而增加中号阳离子尺寸[9];偶极冷冻直接关联于结构各向异性(最大结晶应变)[3]。对于A位取代偶极子的热稳定性是通过其可以通过统计阳离子大小方差[10]被量化局部应变梯度确定的。所有研究的材料是电介质弛豫和频率响应的分析表明,在这些材料中的偶极响应的冻结是玻璃样的,而不是成核和生长[11,12]中的一个。感兴趣的铁性性质加上应变,这将是在稳定性,交换动力学和薄膜性能的范围内很重要。应变的与铁电顺序参数产生变化的弹性性能和耦合这些已被研究用于通过谐振超声光谱(RUS)Ba_6GaNb_9O_(30)(BGNO)的陶瓷样品。对于BGNO剪切和体积模量的室温值,而不是为TTB与相关组合物,其是斜方晶系在室温下,与铁电过渡的抑制一致更高。相反,广泛的,倒圆的最小在〜1MHz的测量的剪切模量是伴随着在邻近115ķ声损耗的宽圆形最大,并且表示弛豫冻结行为。弹性软化从室温温度下降,提前冷冻区间,归因于动态极性纳米区域(PNR中)的发展,

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号