首页> 外文会议>TechConnect World Innovation Conference and Exposition >Numerical Analysis of Laser Induced Photothermal Effects using Colloidal Plasmonic Nanostructures
【24h】

Numerical Analysis of Laser Induced Photothermal Effects using Colloidal Plasmonic Nanostructures

机译:胶体等离子体纳米结构激光诱导光热效应的数值分析

获取原文

摘要

Colloidal noble metal (plasmonic) nanostructures are finding increasing use in a variety of photothermal applications that range from nanoparticle synthesis to bioimaging to medical therapy. In many applications, a pulsed laser is used to excite the plasmonic nanostructures at their plasmon resonant frequency, which results in a peak absorption of incident photons and highly localized (sub-wavelength) field enhancement. In addition to enabling efficient nanoscale heating from a remote source, the resonant heating wavelength can be tuned within the ultraviolet through near- infrared spectrum by adjusting the geometry of the nanoparticle during synthesis. Following our previous work, we present computational models to predict various photonic and thermo-fluidic aspects associated with nanosecond-pulsed, laser-heated colloidal metallic nanoparticles. We simulate energy conversion within different nanoparticle structures at plasmon resonance, heat transfer from the particle tosurrounding fluid and phase change of the fluid leading to homogenous bubble nucleation. We consider various nanoparticle geometries including nanorods, nanotori, nanorings and nanocages. We show that various process parameters such as the laser intensity, incident wavelength, polarization, pulse duration and the orientation and shape of the nanoparticles can be tuned to optimize the photothermal process. We discuss the utilization of such nanoparticles in photothermal bioimaging, drug delivery and therapy of malignant tumors.
机译:胶体贵金属(等离子体)纳米结构在各种光热应用中发现,从纳米粒子合成到生物分析到医疗疗法的各种光热应用。在许多应用中,脉冲激光用于在其等离子体谐振频率下激发等离子体纳米结构,这导致入射光子的峰值吸收和高度局部化(子波长)场增强。除了从远程源实现高效的纳米级加热之外,通过在合成期间调节纳米颗粒的几何形状,可以通过近红外光谱在紫外线中调谐谐振加热波长。在我们之前的工作之后,我们提出了计算模型来预测与纳秒脉冲激光胶体金属纳米颗粒相关的各种光子和热流体方面。我们在等离子体共振下模拟不同纳米粒子结构内的能量转换,从粒子调谐液中传热和导致均匀泡沫成核的流体的相变。我们考虑各种纳米粒子几何形状,包括纳米棒,纳米杆,纳米和纳米病。我们表明,可以调整各种工艺参数,例如激光强度,入射波长,偏振,脉冲持续时间和纳米颗粒的方向和形状,以优化光热过程。我们探讨了这种纳米颗粒在光热生物成像,药物递送和恶性肿瘤治疗中的利用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号