首页> 外文会议>2013 Conference on Lasers and Electro-Optics Europe Internationaluantum Electronics Conference >Quantum coherence explored at the level of individual light-harvesting complexes
【24h】

Quantum coherence explored at the level of individual light-harvesting complexes

机译:在单个光收获综合体的水平上探索量子相干性

获取原文

摘要

Quantum mechanical effects in biological processes, such as natural photosynthesis, are intriguing and lively debated issues.1 The initial steps of photosynthesis comprise the absorption of sunlight by pigmentprotein complexes as well as rapid and remarkably efficient funnelling of excitation energy to a reaction centre. In these energy transfer processes oscillatory signatures of surprisingly long-lived coherences have been found by 2-dimensional spectroscopy on ensembles of various light-harvesting complexes.2-6 These data have been modelled in terms of environmentally assisted quantum transport with a careful balance between coherence, dissipation, and dephasing.7-10 This precarious equilibrium is influenced by temporal, spatial and spectral inter-complex variations on a nanoscopic level, caused by the highly dynamic environments and broad conformational diversity in functioning bio-systems. Unfortunately, ensemble experiments fail to resolve this. Hence, to unravel the nature of energy transfer in light-harvesting and to uncover the possible biological role of long-lived quantum coherences in the energy transfer dynamics,1,10 it is crucial to probe the ultrafast response of antenna proteins beyond the ensemble average and to test the robustness of coherences against perturbations on the level of individual complexes.11,12 Here we demonstrate ultrafast quantum coherent energy transfer within single light-harvesting complexes of a purple bacterium under physiological conditions.13 We find that quantum coherences between electronically coupled energy eigenstates persist at least 400 fs, significantly longer than previously reported,6,7 and that distinct energy transfer pathways can be identified in each complex. Strikingly, also changing transfer pathways in individual complexes on time scales of seconds are revealed. This is attributed to structural rearrangements of the pigment molecule- and the surrounding protein scaffold caused by ubiquitous thermal disorder at elevated temperatures. Our data indicate that long-lived quantum coherence indeed plays a biological role as it renders energy transfer robust in the presence of disorder.13
机译:Quantum机械效应在生物过程中,如天然光合作用,是有趣的和热闹的辩论问题。 1 光合作用的初始步骤包括颜料蛋白复合物的阳光吸收,以及激发的快速且显着有效的漏斗给反应中心的能量。在这些能量转移过程中,在各种光收获配合物的集合上发现了令人惊讶的长寿一致性的振荡签名。 2-6 这些数据已经以环保辅助建模Quantum Transport,在一致性,耗散和去除之间进行仔细平衡。 7-10 这种不稳定的平衡受到高度动态环境引起的纳米镜水平的时间,空间和光谱间变化的影响功能性生物系统的广泛构象多样性。不幸的是,集合实验无法解决这一点。因此,为了揭开光收集的能量转移的性质,并揭示能量转移动力学中的长寿命的长量子相干的可能生物学作用, 1,10 对探测超快反应至关重要在整体平均值之外的天线蛋白质和测试对个体复合物水平的扰动的鲁棒性。 11,12 在这里,我们在紫色的单个光收集复合物中展示超速度量子相干能量转移生理条件下的细菌。 13 我们发现电子耦合能量特征酯之间的量子相干持续至少400 fs,显着长于先前报道的 6,7 并且具有明显的能量转移可以在每个复合物中识别途径。令人惊讶的是,揭示了各个复合物中的转移途径在逐步的时间尺度上变化。这归因于颜料分子的结构重排和由升高的温度在普遍存在的热紊乱引起的周围蛋白质支架。我们的数据表明,长寿的量子相干性确实起到了生物学作用,因为它使能量转移在病症存在下的能量转移。 13

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号