首页> 外文会议>Symposium on "One-dimensional nanostructured materials for energy conversion and storage" >Gas Phase Electrodeposition: A Programmable Localized Deposition Method for Rapid Combinatorial Investigation of Nanostuctured Devices and 3D Bulk Heterojunction Photovoltaic Cells
【24h】

Gas Phase Electrodeposition: A Programmable Localized Deposition Method for Rapid Combinatorial Investigation of Nanostuctured Devices and 3D Bulk Heterojunction Photovoltaic Cells

机译:气相电沉积:一种可编程局部沉积方法,用于快速组合纳米电器装置和3D散装异质结光伏电池的组合研究

获取原文
获取外文期刊封面目录资料

摘要

This article applies a recently discovered gas phase nanocluster electrodeposition process to the formation and combinatorial improvement of 3D bulk heterojunction photovoltaic cells. The gas phase deposition process used here is a single reactor system that forms charged nanoclusters (gold, silver, tungsten, and platinum) at atmospheric pressure. The clusters deposit onto selected surface areas with sub 100 nm lateral resolution using a programmable concept similar to liquid phase electrodeposition such that biased electrodes turn ON or OFF deposition in selected areas. Continued deposition of the nanoparticles results in a tower array with different lengths and density on a single substrate which is used as contacts to the active organic layer of 3D bulk heterojunction photovoltaic cells. Applying a combinatorial approach identifies in a massively parallel way electrode designs and topologies that improve light scattering, absorption, and minority carrier extraction. We report photovoltaic cells with higher and denser nanocluster tower arrays that improve the power conversion efficiency of bulk heterojunction photovoltaic cells by approximately 47.7%.
机译:本文将最近发现的气相纳米光幕电沉积工艺应用于3D散装异质结光伏电池的形成和组合改进。这里使用的气相沉积工艺是单一反应器系统,其在大气压下在大气压下形成带电的纳米团簇(金,银,钨和铂)。使用类似于液相电沉积的可编程概念,将簇用Sub 100nm横向分辨率沉积在具有亚100nm横向分辨率的所选表面区域上。使得偏置电极在所选区域中打开或截止沉积。纳米颗粒的继续沉积导致具有不同长度和密度的塔架阵列,单个基板上用作与3D散装异质结光伏电池的有源有机层的触点。应用组合方法识别以大规模的平行方式,改善光散射,吸收和少数型载体提取的拓扑结构和拓扑。我们报告具有更高和更密集的纳米光栅塔阵列的光伏电池,可提高散装异质结光伏电池的功率转换效率约为47.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号