首页> 外文会议>Conference on Innovative Materials For Additive Manufacturing >ADDITIVE MANUFACTURING OF STAINLESS STEEL VIA FUSED DEPOSITION
【24h】

ADDITIVE MANUFACTURING OF STAINLESS STEEL VIA FUSED DEPOSITION

机译:通过熔融沉积的不锈钢添加剂制造

获取原文

摘要

Conventionally, processes for additive manufacturing of metals use laser or electron beams and open powder. This makes them expensive and potentially hazardous to health. In contrast to that, fused deposition of metals (FDMet) represents a low cost and safe alternative for fabrication of near net-shape metal structures. Figure 1 illustrates the FDMet process used in this study. 316L stainless steel powder is mixed with a thermoplastic binder into a homogeneous feedstock. The feedstock was extruded into a filament, which is used for 3D printing in off-the-shelf, low cost, fused deposition modeling 3D printers. More than 60 wt% of the thermoplastic binder is removed in a solvent debinding step, leaving behind a porous structure consisting of metal powder and the insoluble backbone polymer. In a thermal step, the backbone is removed by pyrolysis. Finally, the metal powder is sintered into dense metallic structures. Optimization of the binder composition is essential to fulfill all the requirements imposed by the different process steps: compatibility, high flexibility and strength, low viscosity, high yield strength when molten, form stability and low residue. In this study, we perform an optimization of the binder composition to maximize the printability. We show that by reducing the filament viscosity and increasing the stiffness, the wear-out of the filament by the extruder gears can be prevented. Therefore, it is possible to reduce the nozzle diameter from 800 urn to 200 urn for increased print resolution. The sintered material is characterized by electron microscopy and nanoindentation mapping. Figure 2 a) shows a thin-walled structure in the as-printed state. The indentation maps report an elastic modulus scattering around 200 GPa (Fig. 2 b)) and a hardness of 5.75 GPa (Fig. 2 c)) of the sintered sample. Pores appear as regions of lower modulus and hardness.
机译:通常,金属添加剂制造的方法使用激光或电子束和开放粉末。这使得它们昂贵且可能对健康有害。与此相反,金属(FDMET)的熔融沉积代表了用于制造近网状金属结构的低成本和安全的替代品。图1说明了本研究中使用的FDMet方法。将316L不锈钢粉末与热塑性粘合剂混合到均匀原料中。将原料挤出成灯丝,其用于现成的低成本,低成本,融合沉积建模3D打印机的3D打印。将超过60wt%的热塑性粘合剂除去溶剂脱脂步骤中,留下由金属粉末和不溶性骨架聚合物组成的多孔结构。在热步骤中,通过热解除去骨架。最后,金属粉末烧结成致密金属结构。粘合剂组合物的优化对于满足不同工艺步骤施加的所有要求至关重要:相容性,高柔韧性和强度,低粘度,熔融,形成稳定性和低残留物的高屈服强度。在这项研究中,我们对粘合剂组合物进行了优化,以最大化可印刷性。我们表明,通过减小灯丝粘度并增加刚度,可以防止挤出机齿轮的长丝的磨损。因此,可以将喷嘴直径从800 URN降至200 URN以增加打印分辨率。烧结材料的特征在于电子显微镜和纳米狭窄映射。图2a)示出了在印刷状态下的薄壁结构。压痕图报告烧结样品的5.75GPa的硬度为200gPa(图2b))的弹性模量散射,以及5.75gPa(图2c))的硬度。毛孔出现为模量和硬度下的区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号